Capítulo 2  Operações com números naturais

Trocando ideias

Ícone do tema SAÚDE.

No início de 2022, o Ministério da Saúde anunciou a inclusão de crianças da faixa etária de 5 a 11 anos no Plano Nacional de Operacionalização da Vacinação contra a côvid dezenóve (PNO). Estima-se que esse público era de 20 milhões de crianças.

Fotografia. Profissional da saúde, mulher paramentada com touca, avental e mascara aplicando vacina em um menino negro que está de mascara preta e camiseta azul.
Menino é vacinado contra coronavírus em posto do Sistema Único de Saúde (sús) em Guarani (Minas Gerais). Foto de 2022.

Ícone de cálculo mental.

Até o dia 07/02/2022, 3.setecentas.000 crianças haviam sido imunizadas. A partir dessa data, quantas crianças, aproximadamente, ainda precisavam tomar a vacina?

Ícone de atividade oral.

 

Ícone de atividade em grupo.

Na sua opinião, qual a importância de tomar vacinas? Converse com os colegas.

Neste capítulo, vamos ampliar nossos conhecimentos sobre operações com números naturais.

1 Adição com números naturais

Observe o total de pontos conquistados pelos cinco pilotos de motovelocidade mais bem colocados no Superbike Brasil 2021.

Posição

Piloto

Pontos

Pedro Sampaio

177

Mauriti Junior

129

Léo Tamburro

123

Júlio Fortunado

121

Danilo Lewis

77

Dados obtidos em: https://oeds.link/PABJXP. Acesso em: 17 abril 2022.

Qual foi o total de pontos alcançado pelos pilotos que conquistaram as três primeiras posições?

Para obter essa resposta, devemos juntar, unir ou reunir quantidades, ou seja, efetuar a ­operação denominada adição.

Acompanhe como podemos obter esse total:

Esquema. Algoritmo usual da adição 177 mais 129 mais 123, igual a 429. Na primeira linha o número 177, à direita uma seta amarela apontando para a esquerda indicando parcela. Abaixo, à esquerda, o número 129, alinhado ordem a ordem com o número 177. À direita uma seta amarela apontando para a esquerda indicando parcela. Abaixo, à esquerda, o sinal de adição e à direita o número 123, alinhado ordem a ordem com os números 177 e 129. À direita uma seta amarela apontando para a esquerda indicando parcela. Abaixo, traço horizontal. Abaixo, o número 429, alinhado ordem a ordem com os números 177, 129 e 123. Á direita uma seta amarela apontando para a esquerda indicando soma ou total.

Nessa adição, os números 177, 129 e 123 são as parcelas, e 429 é a soma (ou total).

Outra ideia da adição é a de acrescentar uma quantidade à outra.

Caso houvesse mais uma corrida no campeonato citado anteriormente e o piloto Pedro Sampaio ­ganhasse mais 25 pontos, chegando em 1º lugar, deveríamos acrescentar esses 25 pontos aos 177:

177 + 25 = 202

Portanto, o piloto terminaria o campeonato com 202 pontos.

Fotografia. Motociclista profissional  fazendo uma curva em uma pista de corridas. Ele está usando capacete e traje nas cores vermelha, azul e preta. A motocicleta é predominantemente vermelha e tem detalhes em azul, amarelo, branco e preto.
Pedro Sampaio, campeão do SuperBike Brasil, São Paulo (São Paulo). Foto de 2021.

LEMBRE-SE: Escreva no caderno.

Algumas propriedades da adição

Vamos estudar algumas propriedades da adição.

Propriedade comutativa

Ícone de cálculo mental.

Adicione mentalmente:

12 mais 28. 28 mais 12

a) Que resultados você obteve?

b) O que você percebeu?

Escolha outros dois números naturais e, em seu caderno, escreva uma adição cujas parcelas são somente esses números. Depois, escreva outra adição trocando a ordem das parcelas. Finalmente, calcule o resultado das duas adições. O que você observou?

Em uma adição de números naturais, a ordem das parcelas não altera a soma.

Propriedade associativa

Vamos efetuar 8 + 12 + 10 associando as parcelas de dois modos.

Sentença matemática. Expressão numérica na horizontal. Abre parênteses, 8 mais 12, fecha parênteses, mais 10, igual, 20 mais 10, igual, 30.  Sentença matemática. Expressão numérica na horizontal. 8 mais, abre parênteses, 12 mais 10, fecha parênteses, igual, 8 mais 22, igual, 30.

Escolha três números naturais. Adicione, em seu caderno, a soma dos dois primeiros números com o terceiro. Em seguida, adicione o primeiro número com a soma dos dois últimos. O que você observou?

Em uma adição de três ou mais números naturais, podemos associar as parcelas de diferentes ­modos sem alterar a soma.

Elemento neutro

Ícone de cálculo mental.

Adicione mentalmente:

58 mais zero. zero mais 45

a) Que resultados você obteve?

b) O que você percebeu?

O zero, quando adicionado a outro número natural qualquer, resulta sempre nesse outro número­. Ou seja, o zero como parcela da adição não altera o valor da soma. Por isso, ele é chamado de ­elemento neutro da adição.

Observação

Nas três situações anteriores, realizamos adições em que as parcelas são números naturais. Note que as somas também são números naturais.

Atividades

Faça as atividades no caderno.

1. Considere os números a seguir.

Esquema. Números espalhados em um quadro: 1576, 8916, 7435, 2050, 794

Agora, determine os totais obtidos ao:

a) adicionar os dois maiores números;

b) adicionar os dois menores números;

c) adicionar o menor número com o maior número.

2. Observe o quadro de pontos de uma gincana e responda às questões.

Etapa

Nome

Júlio

3.650

5.995

7.036

Marcelo

3.543

2.786

9.999

Antônio

4.119

3.830

8.678

a) Quantos pontos Júlio obteve nas três etapas?

b) Algum deles conquistou mais de 17 mil pontos nessa gincana?

c) Quem obteve mais pontos nessa gin­cana?

3. Com base nas medidas aproximadas do quadro a seguir, calcule a medida da área total, em quilômetro quadrado cá ême elevado a 2, da Região Sul do Brasil.

Estado

Medida da área (quilômetro quadrado)

Paraná

199.299

Santa Catarina

95.731

Rio Grande do Sul

281.707

Dados obtidos em: https://oeds.link/G5Om6I. Acessos em: 17 abril 2022.

4. Observe a tabela com o número de habitantes das seis cidades mais populosas do Brasil em 2020.

Número de habitantes das seis cidades mais populosas do Brasil em 2020

Cidade

População

São Paulo

12.325.232

Rio de Janeiro

6.747.815

Brasília

3.055.149

Salvador

2.886.698

Fortaleza

2.686.612

Belo Horizonte

2.521.564

Dados obtidos em: https://oeds.link/6Jtiyn. Acesso em: 17 abril 2022.

Ícone calculadora e softwares.

Calcule a população das cidades:

a) do Sudeste listadas no quadro;

b) do Nordeste listadas no quadro.

5. Quando Laerte nasceu, o pai dele tinha 28 anos. Atualmente, Laerte tem 18 anos. Determine a soma das idades de Laerte e de seu pai hoje.

6. Determine a soma de todos os números de três algarismos diferentes que podem ser formados com os algarismos 3, 4 e 5.

7.

Ícone calculadora e softwares.

Ana vai usar a calculadora para determinar a soma de três números ­consecutivos, sabendo que o menor deles é 549. Quando foi realizar os cálculos, Ana percebeu que as teclas 0 e 9 da sua calculadora estavam com defeito. Como Ana poderá fazer esse cálculo? Qual será o resultado?

8.

Ícone de atividade em dupla.

Reúna-se com um colega para responder à questão: quais são os quatro números ímpares que adicionados resultam em 29?

9. Calcule.

a) 16 + 35 + 14 + 15

b) (16 + 14) + (35 + 15)

Você achou mais fácil determinar a soma do item a ou a do item b? Explique.

10. Utilizando as propriedades comutativa e associativa, adicione os números da maneira que julgar mais simples.

a) 26 + 30 + 4 + 20

b) 33 + 12 + 7 + 0 + 8

11. Sabendo que 577 + 323 = 900, escreva o resultado de 323 + 577 sem efetuar a adição. Justifique sua resposta.

12. Por que o zero é o elemento neutro da ­adição?

13.

Ícone de cálculo mental.

Considere a adição:

702 + 299

a) Podemos afirmar que o resultado desta adição é aproximadamente igual a .1000? Por quê?

b) Efetue mentalmente a adição anterior. Depois, explique como você fez.

14.

Ícone de atividade em dupla.

Reúna-se com um colega para resolver o problema a seguir.

Breno foi a uma loja de brinquedos e comprou seis miniaturas. No quadro a seguir, está a lista dessas miniaturas e o preço de cada uma.

Casa

R$ 11,00

Avião

R$ 18,00

Carro

R$ 16,00

Navio

R$ 24,00

Soldado

R$ 7,00

Trem

R$ 19,00

Utilizando as propriedades da adição, cada­ um de vocês deverá sugerir um modo de obter o total dessa compra. Depois, determinem um modo comum de resolução que considerem ser o mais simples e apresentem-no aos demais colegas da classe.

2 Subtração com números naturais

As imagens a seguir são dos dois prédios mais altos do mundo segundo o Guinness World Records.

Fotografia. Edifício alto pontiagudo cercado de edifícios menores.
Edifício Burj Khalifa, em Dubai, nos Emirados Árabes Unidos. É considerado o edifício mais alto do mundo com 828 metros de medida de altura. Foto de 2021.
Fotografia. Edifício alto com formato cilíndrico, semelhante a um lápis, cercado de edifícios menores e de diversos formatos.
Edifício Shanghai Tower, em Xangai, na China. É considerado o segundo maior edifício do mundo com 632 metros de medida de altura. Foto de 2020.

Podemos obter a diferença entre as medidas das alturas dos prédios através da operação chamada ­subtração.

Esquema. Algoritmo usual da subtração 828 menos 632 igual a 196. Na primeira linha o número 828, à direita uma seta amarela apontando para a esquerda indicando minuendo. Abaixo, à esquerda, o sinal de subtração e à direita, o número 632, alinhado ordem a ordem com o número 828, à direita uma seta amarela apontando para a esquerda indicando subtraendo. Abaixo, traço horizontal. Abaixo, o número 196, alinhado ordem a ordem com os números 828 e 632, à direita uma seta amarela apontando para a esquerda indicando restou ou diferença.
Esquema. Subtração na horizontal, 828 menos 632 é igual a 196. Fio amarelo em 828 com a indicação: Burj Khalifa (828 metros). Fio amarelo em 632 com a indicação: Shanghai Tower (632 metros). Fio amarelo em 196 com a indicação: A diferença entre as medidas das alturas dos prédios é de 196 metros.

Além da ideia de comparação, a subtração também pode estar relacionada à ideia de completar e de tirar unidades. Acompanhe as situações.

Situação 1 abre parêntesesideia de completarfecha parênteses

Luís tem cinquenta e duas figurinhas. Quantas figurinhas faltam para ele completar uma centena?

Para responder a essa pergunta, devemos calcular 100 menos 52:

100 menos 52 = 48

Portanto, faltam 48 figurinhas para Luís completar uma centena.

Situação 2 abre parêntesesideia de tirarfecha parênteses

Ana tinha 5 blusas e doou 3 delas. Com quantas blusas ela ficou?

Para responder a essa pergunta, devemos calcular 5 menos 3:

5 menos 3 = 2

Portanto, Ana ficou com duas blusas.

Atividades

Faça as atividades no caderno.

15. Calcule, quando possível, o resultado das subtrações. Nem sempre é possível efetuar uma subtração entre dois números naturais.

a) 189 menos 86

b) 856 menos 799

c) 654 menos 830

d) .1050 menos 867

e) .2160 menos .3000

f) .5555 menos .5555

Quando é possível efetuar uma subtração entre dois números naturais?

16. Responda, no caderno, às questões.­

a) Qual é a diferença entre dois números iguais?

b) Qual é a diferença entre dois números pares e consecutivos?

c) Podemos afirmar que a propriedade comutativa é válida para a subtração?

17. Pedro nasceu em julho de 1993. Que idade ele terá em agosto de 2025?

18. Quantos anos você completará no ano 2030?

19. Luís utilizou R$ 700,00setecentos reais para pagar um telefone celular. Calcule o preço desse aparelho, sabendo que Luís recebeu R$ 25,00vinte e cinco reais de troco.

20.

Ícone de elaboração de problemas.

 

Ícone de atividade em dupla.

Copie o enunciado do problema a seguir em seu caderno e complete com os dados que quiser. Depois, troque com um colega e resolva o problema dele.

 Adalto comprou uma mesa por R$

Ilustração. Retângulo cinza.

e pagou com

Ilustração. Retângulo cinza.

cédulas de R$

Ilustração. Retângulo cinza.

. Quanto ele recebeu de troco?

21. Efetue as subtrações.

a) .67056 menos .9453

b) .136917 menos .85862

c) .235000 menos .196417

d) .76432 menos .65321

22.

Ícone de cálculo mental.

Calcule mentalmente o resultado das subtrações.

a) 189 menos 29

b) 768 menos 59

c) 974 menos 101

d) .2358 menos 202

23. Criptografia é a arte de escrever utilizando caracteres secretos ou palavras de uma escrita que não é compreendida por todos. Decifre o criptograma a seguir e registre o valor de cada letra, sabendo que cada uma delas indica um algarismo, que letras iguais representam algarismos iguais e que letras diferentes representam algarismos diferentes.

Esquema. Algoritmo usual da subtração. Na primeira linha, o número tem 6 como algarismo das unidades, o 7 como algarismo das dezenas, a letra A na posição do algarismo das centenas e 3 como algarismo das unidades de milhar. Abaixo, à esquerda, o sinal de subtração e à direita, um número que tem 1 como algarismo das unidades, a letra A na posição do algarismo das dezenas, a letra B na posição do algarismo das centenas e  letra C na posição do algarismo das unidades de milhar. Abaixo, traço horizontal. Abaixo, 1C9B.

Relação fundamental da subtração

Observe a cena.

Ilustração. À esquerda, mulher de cabelo castanho, blusa vermelha está atras de um balcão com a mão estendida para um homem de cabelo preto, óculos e camisa verde que entrega uma cédula de 100 reais. A mulher diz: Se o tênis custa R$ 83,00 e você está pagando com uma cédula de R$ 100,00, preciso lhe dar R$ 17,00 de troco, certo? À direita do homem, menina de cabelo enrolado segura uma caixa com laço amarelo. À direita da menina, sapatos na vitrine. Sobre a vitrine esta escrito sapataria.

Podemos conferir o troco de duas maneiras:

por meio de uma subtração:

Esquema. Subtração horizontal. 100 reais menos 83 reais igual 17 reais. Fio amarelo em 100 reais indicando o valor entregue para pagamento. Fio amarelo em 83 reais indicando o valor do tênis. Fio amarelo em 17 reais indicando o troco recebido.
Esquema. Subtração horizontal 100 menos 83 igual 17. Fio amarelo em100 indicando o minuendo. Fio amarelo em 83 indicando o subtraendo. Fio amarelo em 17 indicando a diferença.

por meio de uma adição:

Esquema. Adição horizontal. 17 reais mais 83 reais igual a 100 reais. Fio amarelo em 17 indicando o troco recebido. Fio amarelo em 83 reais indicando o valor do tênis. Fio amarelo em 100 reais indicando o valor entregue para pagamento.
Esquema. Adição horizontal. 83 mais 17 igual a 100. Fio amarelo em 83 indicando o troco subtraendo. Fio amarelo em 17 indicando a diferença. Fio amarelo em 100 indicando o minuendo.

Podemos conferir o resultado de uma subtração por meio de uma adição, pois o resultado da adição do subtraendo com o resto é sempre igual ao minuendo.

Assim, podemos escrever a relação fundamental da subtração da seguinte maneira:

Se o minuendo menos o subtraendo é igual ao resto, então o subtraendo mais o resto é igual ao minuendo.

Por isso, dizemos que a adição e a subtração são operações inversas.

Atividades

Faça as atividades no caderno.

24. O piloto espanhol Alex Palou conquistou o Campeonato de Fórmula Indy em 2021 com 549 pontos, 391 a mais que o piloto brasileiro Hélio Castroneves, que concluiu a temporada em 22º lugar. Qual foi o total de pontos obtidos pelo brasileiro na Fórmula Indy em 2021?

Dados obtidos em: https://oeds.link/qpwCyrs. Acesso em: 18 janeiro 2022.

Fotografia. Homem branco de boné e casaco branco e azul. Ele sorri com um dedo em riste ao lado de um troféu.
Alex Palou comemorando a conquista do Campeonato de Fórmula Indy em 2021.

25. Resolva os problemas.

a) Em uma subtração, o subtraendo é .4738 e o resto é 149. Determine o minuendo.

b) Em uma subtração, o minuendo é .1001 e o resto é 956. Determine o subtraendo.

26. Se, em uma subtração, aumentarmos o minuendo em 20 unidades e diminuirmos o subtraendo em 15 unidades, em quanto aumentará a diferença?

27. Descubra, em cada item, o valor dos algarismos representados por

Ilustração. Triângulo cinza.

e

Ilustração. Quadradinho cinza.

.

a)

Esquema. Algoritmo usual da subtração envolvendo números de 4 ordens. Na primeira linha, o número tem 9 como algarismo das unidades, triângulo na posição do algarismo das dezenas, 3 como algarismo das centenas e 5 como algarismo das unidades de milhar. Abaixo, à esquerda, o sinal de subtração e à direita, um número que tem 4 como algarismo das unidades, 7 como algarismo das dezenas, quadrado na posição do algarismo das centenas e 1 como algarismo das unidades de milhar. Abaixo, traço horizontal. Abaixo, 3455

b)

Esquema. Algoritmo usual da subtração envolvendo números de 4 ordens. Na primeira linha, o número tem 5 como algarismo das unidades, 3 como algarismo das dezenas, triângulo como algarismo na posição do algarismo das centenas e 9 como algarismo das unidades de milhar. Abaixo, à esquerda, o sinal de subtração e à direita, um número que tem 8 como algarismo das unidades, quadrado como algarismo na posição do algarismo das dezenas, 7 como algarismo das centenas e 6 como algarismo das unidades de milhar. Abaixo, traço horizontal. Abaixo, 2 707

28. Copie os itens a seguir no caderno, substituindo cada

Ilustração. Quadradinho cinza.

pelo número adequado.

a) .1860 menos

Ilustração. Quadradinho cinza.

= 357

b)

Ilustração. Quadradinho cinza.

menos .3545 = .1283

29. A soma de três números é .8470. O primeiro é .4319 e o segundo é .1843. Determine o terceiro número.

30.

Ícone de elaboração de problemas.

 

Ícone calculadora e softwares.

Kátia utilizou uma calculadora e fez o seguinte cálculo:

Ilustração. Teclas de calculadora 1, 2, 2, 5, mais, 1, 8, 7, 4,  igual.

Elabore um problema que possa ser resolvido utilizando a operação inversa da adição que Kátia efetuou.

Expressões numéricas com adições e subtrações

Na casa de Júlia havia 4 bananas; ela foi à feira e comprou mais uma dúzia; na volta para casa, acabou comendo duas. Com quantas bananas ela ficou em sua casa?

Ilustração. Menina loira de blusa rosa à frente de uma mesa. Sobre a mesa, sacola com frutas. Ao lado, cesta com bananas.

Para resolver este problema, devemos calcular o valor da expressão numérica 4 + (12 2).

Esquema. Cálculo na horizontal. 4 mais, abre parênteses, 12 menos 2, fecha parenteses, igual, 4 mais 10 igual a 14. Fio amarelo indicando que 12 menos 2 é igual a 10.

Portanto, Júlia ficou com 14 bananas em sua casa.

Observações

Nas expressões numéricas em que não há parênteses, as operações de adição e de subtração devem ser feitas na ordem em que aparecem.

Nas expressões numéricas em que há parênteses, eles indicam as operações que devem ser feitas primeiro.

Em uma expressão numérica na qual uma das operações é a subtração, a mudança dos parênteses pode levar a resultados diferentes. Observe os exemplos a seguir:

a)

Esquema. Cálculo em duas linhas. Na primeira linha, 10 menos, abre parênteses, 7 mais 2, fecha parênteses, igual Na segunda linha, 10 menos 9 igual a 1. 9 e 1 com mais destaque que os demais números. Fio amarelo, indicando que 7 mais 2 é igual a 9.

b)

Esquema. Cálculo em duas linhas. Na primeira linha, abre parênteses, 10 menos 7, fecha parênteses, mais 2. Na segunda linha, 3 mais 2 igual a 5. 3 e 5 com mais destaque que os demais números. Fio amarelo, indicando que 10 menos 7 é igual a 3.

c)

Esquema. Cálculo em duas linhas. Na primeira linha, 15 menos, abre parênteses, 6 menos 3, fecha parênteses, igual. Na segunda linha, 15 menos 3 igual a 12. 3 e 12 com mais destaque que os demais números. Fio amarelo, indicando que 6 menos 3 é igual a 3.

d)

Esquema. Cálculo em duas linhas. Na primeira linha, abre parênteses, 15 menos 6, fecha parênteses, menos 3. Na segunda linha, 9 menos 3 igual a 6. 9 e 6 com mais destaque que os demais números. Fio amarelo, indicando que 15 menos 6 é igual a 9.

Atividades

Faça as atividades no caderno.

31. Calcule o valor de cada expressão nu­mérica.

a) (18 menos 15 + 3) + 2

b) 30 + (50 menos 12) menos 15

c) 13 menos 8 + 7 menos 4 menos 2

d) (60 menos 12) menos (10 + 20) menos 14

e) (100 menos 35 + 15) + (200 + 135 menos 98)

f) 200 menos (40 + 50) menos 90 menos 10

32. Copie as expressões numéricas no caderno, colocando parênteses quando necessário, para determinar o resultado indicado.

a) 8 menos 3 + 4 menos 5 menos 1 = 5

b) 15 menos 8 + 7 + 8 = 8

c) 35 + 15 menos 20 + 18 = 12

d) 19 menos 8 + 5 menos 4 menos 3 = 5

e) 200 menos 120 + 80 + 70 menos 20 + 50 = 0

33. Sérgio pensou em um número. Em se­guida, adicionou-lhe 10. Depois, subtraiu 13 do resultado anterior, obtendo 12. Em que número Sérgio pensou?

34. Leia as frases a seguir e escreva uma expressão numérica que corresponda a cada uma delas. Em seguida, calcule seu valor.

a) Subtraia da soma de 180 com 45 a diferença entre 210 e 107.

b) Adicione 72 à diferença entre 315 e 285.

35.

Ícone calculadora e softwares.

Na maioria das calculadoras modernas, encontramos estas teclas:

Esquema. Representação de teclas de calculadora com o respectivo significado. Representação da tecla ON; Liga Representação das teclas CE e AC; Apaga valores do visor. Representação da tecla OFF; desliga Representação da tecla mais; adiciona Representação da tecla menos; subtrai Representação da tecla vezes; multiplica Representação da tecla divisão; divide Representação da tecla raiz; calcula a raiz quadrada Representação da tecla porcentagem; calcula a porcentagem Representação da tecla igual, indica o resultado Representação da tecla M mais; armazena na memória um número digitado ou adiciona o número digitado ao número armazenado na memória Representação da tecla M menos; subtrai um número daquele armazenado na memória Representação da tecla MR ou MRC; mostra no visor o conteúdo da memória Representação da tecla ponto; representa a vírgula. Fotografia. Calculadora retangular com visor na parte superior e teclado na parte inferior.

Para efetuar cálculos com a calculadora, podemos usar as funções de memória. Digite as sequências a seguir e confirme o resultado no visor.

Ilustração. Processo de calculo feito em uma calculadora, teclas 1, 0, M mais, 2, 0, M mais, 5, M mais, MR. Visor 35. M menos, MR, visor 0. Na segunda linha, teclas 4, 0, M mais, 2, 0, M menos 5, MR. Visor 35. M mais, MR, visor 30.

Escreva em seu caderno a expressão numérica que corresponde ao cálculo efetuado em cada exemplo apresentado.

3 Multiplicação com números naturais

Acompanhe as situações a seguir.

Situação 1

Pedro é professor de dança de salão e está preparando uma apresentação de gafieira. Todos os alunos vão participar, formando 8 casais. Quantos alunos vão participar dessa apresentação?

Ilustração. Salão com pessoas de diferentes idades e etnias dançando, 8 casais e entre eles um homem de camisa verde listrada dançando sozinho.

O total de alunos pode ser determinado por uma adição de parcelas iguais:

2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 16

Logo, 16 alunos vão participar dessa apresentação.

Para simplificar o registro dessa operação, fazemos:

Esquema. Multiplicação na horizontal. 8 vezes 2 igual a 16. Seta amarela indicando lemos: oito vezes dois é igual a dezesseis.

A operação 8 × 2 = 16 é um exemplo de multiplicação. Os números 8 e 2 são os fatores, e 16, o produto

Esquema. Algoritmo usual da multiplicação. 8 vezes 2 igual a 16. Na primeira linha, o número 8, seta amarela indicando  fator. Abaixo à esquerda o sinal de multiplicação e à direita alinhado ao número 8, o número 2, seta amarela indicando fator. Abaixo fio horizontal. Abaixo, 16, seta amarela indicando produto.

Observações

1. Para indicar uma multiplicação, podemos utilizar um ponto () ou o sinal de vezes (×). Assim:

a) 8 × 2 = 8 2 = 16

b) 4 × 12 = 4 12 = 48

2. Utilizamos nomes especiais para indicar algumas multiplicações.

O dôbro de 5 é o mesmo que 2 5.

O triplo de 8 é o mesmo que 3 8.

O quádruplo de 10 é o mesmo que 4 10.

O quíntuplo de 12 é o mesmo que 5 12.

Situação 2

Sandra coleciona figurinhas de animais da fauna brasileira ameaçados de extinção.

Observe como são as páginas do álbum de Sandra.

Ilustração. Menina negra, deitada de barriga para baixo sobre uma almofada roxa de bolinhas amarelas, à direita um álbum de figurinhas, à direita uma estante verde com um urso de pelúcia. À esquerda, um par de tênis rosa e branco.

Quantas figurinhas cabem em cada página?

Em cada uma das fileiras cabe a mesma quantidade de figurinhas. Esse tipo de organização é conhecido como disposição retangular.

Podemos considerar que há 4 fileiras e cabem 3 figurinhas em cada uma.

4 3 = 12

Ou podemos considerar que há 3 fileiras e cabem 4 figurinhas em cada uma.

3 4 = 12

Logo, cabem 12 figurinhas em cada página do álbum.

Situação 3

Para fazer aulas de tênis, Carlos tem 2 calções e 5 camisetas.

Ilustração. Menino de cabelo ruivo e camiseta branca segura na mão direita uma bermuda azul e na mão esquerda uma bermuda verde. Sobre a cama, há uma camiseta verde, uma camiseta laranja, uma camiseta azul, uma camiseta vermelha e uma camiseta branca.

De quantas maneiras diferentes Carlos pode se ­vestir para praticar tênis?

Para encontrar a resposta, é necessário determinar todas as possibilidades que existem. Observe o ­esquema a seguir.

Esquema. Ilustração de uma bermuda azul. Abaixo: seta amarela partindo da bermuda e indicando a camiseta verde, seta amarela partindo da bermuda indicando a camiseta laranja, seta amarela partindo da bermuda, indicando a camiseta azul, seta amarela partindo da bermuda indicando a camiseta vermelha e seta amarela partindo da bermuda indicando a camiseta branca. Esquema. Ilustração de uma bermuda verde. Abaixo: seta amarela partindo da bermuda e indicando a camiseta verde, seta amarela partindo da bermuda indicando a camiseta laranja, seta amarela partindo da bermuda, indicando a camiseta azul, seta amarela partindo da bermuda indicando a camiseta vermelha e seta amarela partindo da bermuda indicando a camiseta branca.

Como há 2 calções e, para cada um, há 5 camisetas, o total de possibilidades é dado por:

2 5 = 10

Podemos pensar, ainda, em 5 camisetas e, para cada uma, 2 calções, ou seja, 5 2 = 10.

Logo, Carlos pode se vestir de 10 maneiras diferentes.

Situação 4

Com R$ 28,00vinte e oito reais, compro 3 miniaturas de carro. Quanto vou pagar por 15 dessas miniaturas?

Esquema. Na primeira linha 28 reais, seta amarela para a direita, 3 miniaturas. Na segunda linha 140 reais, seta amarela para a direita, 15 miniaturas. Seta amarela com a indicação de vezes 5, partindo de 3 miniaturas na primeira linha para 15 miniaturas da segunda linha. Seta amarela com a indicação de vezes 5, partindo de 28 reais na primeira linha para 140 reais da segunda linha. No esquema, o valor de 140 reais está em destaque.

Logo, vou pagar R$ 140,00cento e quarenta reais por 15 miniaturas.

Atividades

Faça as atividades no caderno.

36. Represente cada uma das adições com uma multiplicação.

a) 8 + 8 + 8 + 8

b) 1 + 1 + 1

c) 9 + 9 + 9 + 9 + 9 + 9

d) a + a + a + a

e) 0 + 0 + 0 + 0 + 0

37. Em uma loja de materiais esportivos, há 36 caixas com 12 bolas em cada uma. Podemos calcular o total de bolas nessa loja fazendo apenas uma operação.

a) Que operação é essa?

b) Qual é o resultado dessa operação?

38.

Ícone de cálculo mental.

Calcule mentalmente cada multiplicação e registre os resultados no caderno.

a) 17 10

b) 85 100

c) 19 0

d) 174 .1000

e) 9 8 0

f) 59 .1000

g) .1043 10

h) 75 .10000

O que podemos observar nas multiplicações realizadas?

39.

Ícone de cálculo mental.

Calcule mentalmente o resultado de cada multiplicação. Em seguida, registre os resultados.

a) dôbro de duas centenas.

b) Triplo de meio milhar.

c) Quádruplo de uma dúzia.

d) Quíntuplo de 17.

40. Calcule.

546 + 546 + 546 + 546 + 546 + 546 + 546 + 546 + 546

41. Segundo cálculos de uma empresa de distribuição de água, uma torneira gotejando representa 46 litros de água desperdiçada por dia. Quantos litros de água são desperdiçados em 90 dias?

42. Um automóvel percorre, em média, 8 quilômetros com 1 litro de combustível e vem equipado com um tanque com capaci­dade de 40 litros. Supondo que o tanque de combustível esteja cheio, qual é a medida da distância máxima que esse veículo pode percorrer sem reabastecer?

43. Observe o Setor a do estacionamento de uma indústria automobilística.

Ilustração. Estacionamento com quatro fileiras de nove vagas cada. Na primeira fileira há 6 carros estacionados. Na segunda fileira há 7 carros estacionados. Na terceira fileira: 9 carros estacionados e na quarta fileira há 8 carros estacionados.

a) Qual é o total de vagas do setor?

b) Quantos automóveis estão estacionados?­

44. Efetue as multiplicações no caderno, observando o que elas apresentam de curioso.

a) 37 15

b) 37 18

c) 37 21

d) 37 24

Ícone de cálculo mental.

 Agora, um desafio para você: calcule 37  .2700 mentalmente.

45. Um motor bombeia .3700 litros de água por minuto para uma cisterna. Quantos litros de água esse motor bombeará em 30 minutos?

46. De quantas maneiras diferentes é possível pintar as três faixas de uma figura como a mostrada a seguir, usando, sem repetir, as cores vermelha, verde e azul? Desenhe todas as possibilidades no caderno.

Figura geométrica. Retângulo dividido em 3 partes iguais.

47. Bruno foi a uma loja de roupas e sapatos e comprou os seguintes itens:

uma bermuda branca, uma azul e uma vermelha;

uma camiseta amarela, uma lilás, uma verde e uma cinza;

um par de tênis branco e um preto.

De quantas maneiras diferentes ele pode combinar as roupas com os tênis?

48. Em uma fábrica de eletrodomésticos, são produzidas duzentas e vinte lavadoras por dia. Em 25 dias, quantas lavadoras são fabricadas?

49.

Ícone de elaboração de problemas.

Elabore um problema que possa ser resolvido calculando 14 × .1255.

50.

Ícone de elaboração de problemas.

 

Ícone de atividade em dupla.

Copie o enunciado do problema a seguir em seu caderno e complete com os dados que quiser. Depois, troque com um colega e resolva o problema dele.

 Manoela corre de segunda a sábado e percorre

Ilustração. Retângulo cinza.

quilômetro por dia.  Quantos quilômetros ela percorre, ao todo, por semana? quilômetro por dia. Quantos quilômetros ela percorre, ao todo, por semana?

Algumas propriedades da multiplicação

 

Vamos conhecer algumas propriedades da multiplicação.

LEMBRE-SE: Escreva no caderno.

Propriedade comutativa

Ícone de cálculo mental.

Calcule mentalmente:

7 vezes 8. 8 vezes 7

a) Que resultados você obteve?

b) O que você percebeu?

Escolha outros dois números naturais e, em seu caderno, multiplique um pelo outro. Em seguida, multiplique os mesmos números trocando a ordem dos fatores. O que você observou?

Em uma multiplicação de números naturais, a ordem dos fatores não altera o produto.

Propriedade associativa

Ícone de cálculo mental.

Calcule mentalmente:

Sentença matemática. Expressão numérica na horizontal. Abre parênteses, 2 vezes 3, fecha parênteses, vezes 3. Sentença matemática. Expressão numérica na horizontal. 6 vezes, abre parênteses, 2 vezes 3, fecha parênteses.

a) Que resultados você obteve?

b) O que você percebeu?

Escreva, em seu caderno, três outros números naturais e multiplique o produto dos dois primeiros pelo terceiro. Em seguida, multiplique o primeiro número pelo produto dos dois últimos. O que você observou?

Em uma multiplicação com mais de dois números naturais, podemos associar os fatores de modos diferentes sem alterar o produto.

LEMBRE-SE: Escreva no caderno.

Elemento neutro

Ícone de cálculo mental.

Calcule mentalmente:

1 vezes 25 34 vezes 1

a) Que resultados você obteve?

b) O que você percebeu?

Escreva em seu caderno alguns números naturais. Em seguida, multiplique cada um desses números por 1. O que você observou?

O número 1, quando multiplicado por outro número natural qualquer, resulta sempre nesse outro número. Ou seja, o 1 como fator da multiplicação não altera o valor do produto. Por isso, ele é chamado elemento neutro da multiplicação.

Propriedade distributiva

O painel a seguir é composto de quadradinhos azuis e amarelos.

Esquema. Retângulo subdividido em 20 quadradinhos: 5 colunas com 4 quadradinhos cada. As 3 primeiras colunas da esquerda para a direita são azuis e as 2 últimas são amarelas. Cota vertical para as 4 linhas, indicando 4. Cota horizontal para as 3 primeiras colunas, indicando 3, Cota horizontal para as 2 últimas colunas, indicando 2, Cota horizontal para as 5 colunas, indicando 5.

O número de quadradinhos azuis pode ser obtido multiplicando 4 por 3, e o ­número de quadradinhos amarelos, multiplicando 4 por 2.

Como o número total de quadradinhos do painel é igual ao número de quadradinhos azuis mais o número de quadradinhos amarelos, temos:

4 5 = 4 (3 + 2) = 4 3 + 4 2

Podemos observar que, para multiplicar um número natural por uma adição de duas parcelas, adicionamos os produtos de cada parcela pelo número natural. Nesse caso, foi aplicada a propriedade distributiva da multiplicação em relação à adição.

Observação

A propriedade distributiva também pode ser aplicada de fórma análoga para a subtração. Observe os exemplos a seguir.

a) 8 abre parênteses5 menos 3fecha parênteses = 8 5 menos 8 3 = 40 menos 24 = 16

b) 15 abre parênteses7 menos 4fecha parênteses = 15 7 menos 15 4 = 105 menos 60 = 45

Para multiplicar um número natural por uma adição abre parêntesesou subtraçãofecha parênteses com dois ou mais termos, podemos multiplicar esse ­número por cada um dos termos da adição abre parêntesesou da subtraçãofecha parênteses e adicionar abre parêntesesou subtrairfecha parênteses os resultados obtidos.

Atividades

Faça as atividades no caderno.

51. Sabendo que a ê b são números naturais e a  b = 60, responda.

a) Qual é o valor de b a?

b) Qual é o valor de 1 a b?

c) Qual é o valor de a abre parêntesesb 5fecha parênteses?

Quais são as propriedades utilizadas para justificar as respostas de cada item?

52. Luís considerou mais fácil calcular 2  37  50 e 30 17 da seguinte maneira: 2 50 37 e 30 (10 + 7). Você concorda com Luís? Justifique.

53.

Ícone de cálculo mental.

Calcule mentalmente.

a) 1 2 3 4 5

b) 100 375 2

c) 50 26 2

d) 25 37 4

54. Sabendo que a é um número natural, observe a igualdade 307 a = 307 e responda às questões.

a) Qual é o valor de a?

b) Qual é a propriedade da multiplicação que se aplica a essa situação?

55. Em cada item, aplique a propriedade dis­tributiva da multiplicação.

a) 5 abre parênteses8 + 2fecha parênteses

b) 9 abre parênteses8 menos 3fecha parênteses

c) abre parênteses2 + 8fecha parênteses 15

d) abre parênteses8 menos 3fecha parênteses 4

e) 10 abre parênteses20 + 30fecha parênteses

f) 12 abre parênteses15 menos 6fecha parênteses

56. Determine o número de quadradinhos da figura.

Esquema. Retângulo subdividido em 65 quadradinhos: 13 colunas com 5 quadradinhos cada. As 9 primeiras colunas da esquerda para a direita são verdes e as 4 últimas são azuis. Cota vertical para as 5 linhas, indicando 5. Cota horizontal para as 9 primeiras colunas, indicando 9, Cota horizontal para as 4 últimas colunas, indicando 4.

4 Divisão com números naturais

Divisão exata

Observe a situação a seguir.

Reinaldo distribuiu, em quantidades iguais, 45 bombons em cinco embalagens. Quantos bombons ele colocou em cada embalagem?

Ilustração. Homem branco de cabelos castanhos com chapéu de cozinheiro, camisa marrom e avental branco. Ele está segurando 5 caixas de bombom.

Para determinar a quantidade de bombons que Reinaldo colocou em cada embalagem, devemos dividir 45 por 5.

Esquema. Algoritmo usual da divisão, 45 dividido por 5. Na primeira linha, o número 45, chave de divisão e dentro da chave o número 5. À esquerda, seta apontando para o número 45 indicando como dividendo, à direita, seta apontando para o número 5, indicando como divisor. Abaixo, o número 0 alinhado a ordem das unidades do número 45, número 9 abaixo da chave da divisão. À esquerda, seta apontando para o número 0, indicando resto, à direita, seta apontando para o número 9, indicando quociente.
Esquema. Expressão numérica horizontal. 45 dividido por 5 igual a 9, à direita, seta indicando lemos 45 dividido por 5 é igual a 9.

Logo, Reinaldo colocou 9 bombons em cada embalagem.

Chamamos essa operação de divisão.

Nesse caso, usamos a divisão para repartir uma quantidade em partes iguais.

Quando o resto da divisão é zero, dizemos que a divisão é exata.

Dividindo mentalmente

A professora de Ana Clara e Maurício pediu a eles que dividissem .1024 por 4 o mais rápido que conseguissem. Ambos fizeram um cálculo mental e obtiveram o resultado quase ao mesmo tempo: 256. Então, a professora pediu a eles que explicassem como haviam pensado para chegar ao resultado.

Resposta de Ana Clara: Primeiro, dividi .1024 por 2, que resultou em 512, e, em seguida, dividi 512 por 2 novamente, resultando em 256. Como 2 vezes 2 é igual a 4, achei que fazendo assim ia dar certo.

.1024 dividido por 2 = 512

512 dividido por 2 = 256

Resposta de Maurício: Fiz a decomposição de .1024 da seguinte maneira .1000 + 20 + 4. Então, primeiro, dividi .1000 por 4, que resultou em 250; depois, dividi 20 por 4, resultando em 5; por fim, dividi 4 por 4, tendo como resposta 1. Então, calculei 250 + 5 + 1, ­que resultou em 256.

.1024 = .1000 + 20 + 4

.1000 dividido por 4 = 250

20 dividido por 4 = 5

4 dividido por 4 = 1

250 + 5 + 1 = 256

Depois de ouvir as duas resoluções, a professora comentou que tanto Ana Clara quanto Maurício ­haviam calculado de maneira correta, mas, em comparação com a fórma utilizada por Maurício, a resolução de Ana Clara era mais simples e prática, porque apresentava menos etapas de cálculo.

Atividades

Faça as atividades no caderno.

57. Resolva os problemas.

a) Artur dividiu, igualmente, os 216 peixes do seu tanque em 12 aquários. Quantos peixes Artur colocou em cada um desses aquários?

b) Tia Lúcia repartiu R$ 480,00quatrocentos e oitenta reais igualmente entre os seus 8 sobrinhos. Quantos reais ela deu a cada um?

58. Efetue a divisão de 120 por 5 e responda.

a) Qual é o quociente dessa divisão?

b) Qual é o resto dessa divisão?

59. Efetue no caderno.

a) 156 dividido por 12

b) 320 dividido por 64

c) 900 dividido por 25

d) .10032 dividido por 8

60.

Ícone de cálculo mental.

Calcule mentalmente e escreva o resultado.

a) 50 dividido por 10

b) 500 dividido por 10

c) 500 dividido por 100

d) 50 dividido por 5

61. Um caminhão transporta 24.quatrocentas e trinta e duas garrafas de suco em caixas que contêm duas dúzias de garrafas cada uma. Quantas caixas há nesse caminhão?

62.

Ícone de atividade em dupla.

Reúna-se com um colega e resolvam o ­seguinte problema.

A luz emitida pelo Sol viaja no vácuo a .300000 quilômetros por segundo. Saben­do que o Sol está a aproximadamente ..150000000 quilômetros da Terra, calculem a quantidade de segundos que a luz do Sol demora para chegar à Terra.

Expressões numéricas com as quatro operações

No cálculo de uma expressão numérica, as operações indicadas devem ser efetuadas na ­seguinte ordem:

1º) multiplicações e divisões, na ordem em que aparecem;

2º) adições e subtrações, na ordem em que aparecem.

Observe os exemplos a seguir.

a)

Esquema. Cálculo de 5 vezes 1 mais 4. 5 vezes 1 mais 4 igual. Abaixo, igual, 5 mais 4, igual. Fio amarelo, indicando que o número 5 é o resultado de 5 vezes 1. O número 5 está em destaque. Abaixo, igual a 9.

b)

Esquema. Cálculo de 30 dividido por 2 vezes 3. 30 dividido por 2 vezes 3 igual. Abaixo, igual, 15 vezes 3, igual. Fio amarelo, indicando que o número 15 é o resultado de 30 dividido por 2. O número 15 está em destaque. Abaixo, igual a 45.

c)

Esquema. Cálculo de 15 dividido por 5 menos 1 mais 4 vezes 3. 15 dividido por 5 menos 1 mais 4 vezes 3 igual. Abaixo, igual, 3 menos 1 mais 12 igual. Fio amarelo, indicando que o número 3 é o resultado de 15 dividido por 5. Fio amarelo, indicando que o número 12 é o resultado de 4 vezes 3. Os número 3 e 12 estão em destaque. Abaixo, igual 2 mais 12 igual. Fio amarelo indicando que o número 2 é o resultado de 3 menos 1. O número 2 está em destaque. Abaixo, igual, 14.

Há expressões em que aparecem sinais de associação. Nesse caso, devemos resolver as ­operações nesta ordem:

1º) as que estiverem entre parênteses abre parêntesesfecha parênteses;

2º) as que estiverem entre colchetes abre colchetefecha colchete;

3º) as que estiverem entre chaves abre chavefecha chave.

Observe os três exemplos a seguir.

a)

Esquema. Cálculo de, abre parênteses, 24 menos 12, fecha parênteses, dividido por 2 vezes 3, igual. Abaixo, igual, 12 dividido por 2 vezes 3, igual. Fio amarelo indicando que o número 12 é o resultado de 24 menos 12. O número 12 está em destaque. Abaixo, igual, 6 vezes 3, igual 18. Fio amarelo indicando que o número 6 é o resultado de 12 dividido por 2. O número 6 está em destaque.

b)

Esquema. Calculo de 100 mais 60, dividido por, abre parênteses, 9 menos 5 mais 2, fecha parênteses, vezes 2, igual. Abaixo, igual, 100 mais 60, dividido, abre parênteses, 4 mais 2, fecha parênteses, vezes 2, igual. Fio amarelo indicando que o número 4 é o resultado de 9 menos 5. O número 4 está em destaque. Abaixo, igual, 100 mais 60, dividido por 6, vezes 2, igual. Fio amarelo indicando que o número 6 é o resultado de 4 mais 2. O número 6 está em destaque. Abaixo, igual, 100 mais 10, vezes 2, igual. Fio amarelo indicando que o número 10 é resultado de 60 dividido por 6. O número 10 está em destaque. Abaixo, igual, 100 mais 20 igual a 120. Fio amarelo indicando que o número 20 é resultado de 10 vezes 2. O número 20 esta em destaque.

c)

Esquema. Cálculo de 30 menos, abre chaves, 20 menos 4, abre colchetes, 30 menos, abre parênteses, 8 mais 4, fecha parênteses, vezes 2, fecha colchetes, dividido por 2, fecha chaves, igual. Abaixo, igual, 30 menos, abre chaves, 20 menos 4, vezes, abre colchetes, 30 menos 12  vezes 2, fecha colchetes, dividido por 2, fecha chaves, igual. Fio amarelo indicando que o número 12 é resultado de 8 mais 4. O número 12 está em destaque. Abaixo, igual,  30 menos, abre chaves, 20 menos 4, vezes, abre colchetes, 30 menos 24, fecha colchetes, dividido por 2, fecha chaves, igual. Fio amarelo indicando que o número 24 é o resultado de 12 vezes 2. O número 24 está em destaque. Abaixo, igual, 30 menos, abre chaves, 20 menos 4, vezes 6, dividido por 2, fecha chaves, igual. Fio amarelo indicando que o número 6 é resultado de 30 menos 24. O número 6 está em destaque. Abaixo,igual, 30 menos, abre chaves, 20 menos 24, dividido por 2, fecha chaves, igual. Fio amarelo indicando que o número 24 é resultado de 4 vezes 6. O número 24 está em destaque. Abaixo, igual, 30 menos, abre chaves, 20 menos 12, fecha chaves, igual. Fio amarelo indicando que o número 12 é resultado de 24 dividido por 2. O número 12 está em destaque. Abaixo, igual, 30 menos 8. Fio amarelo indicando o número 8 como resultado de 20 menos 12. O número 8 está em destaque. Abaixo, igual, 22.

Sugestão de leitura

THOMSON, Michael. O mistério dos números perdidos. Tradução Adazir Almeida Carvalho. São Paulo: Melhoramentos, 2011.

Esse livro traz aventura, desafios e problemas numéricos interessantes para o leitor resolver, superando cada etapa até chegar ao final dessa envolvente história.

Atividades

Faça as atividades no caderno.

63. Calcule o valor das expressões numéricas.

a) 5 + 6 4

b) abre parênteses5 + 6fecha parênteses 4

c) 10 + 8 4 menos 15

d) 200 menos 3 60 + 8

e) abre parênteses18 menos 15 dividido por 5 + 3fecha parênteses 4

f) abre colcheteabre parênteses21 dividido por 7fecha parênteses abre parênteses3 dividido por 1fecha parênteses + 6fecha colchete menos abre colcheteabre parênteses7 6fecha parênteses dividido por abre parênteses5 menos 2fecha parêntesesfecha colchete

g) abre chaveabre colchete13 menos abre parênteses3 2 + 1fecha parêntesesfecha colchete + 3 + abre parênteses5 2 menos 4 : 2fecha parêntesesfecha chave

64.

Ícone de elaboração de problemas.

 

Ícone de atividade em dupla.

No caderno, elabore um problema que ­possa ser resolvido por meio da expressão numérica a seguir.

Sentença matemática. Expressão numérica na horizontal. 2 vezes 20 menos 13.

Depois, troque de caderno com um colega e resolva o problema criado por ele.

O colega resolveu corretamente o seu problema? Qual é a solução do problema?

Divisão não exata

Vamos dividir 38 por 7.

Esquema. Algoritmo usual da divisão. 38 dividido por 7. Abaixo da chave, ponto de interrogação alaranjado.

Observe que não existe nenhum número natural que, ao ser multiplicado por 7, dê como resultado 38. O número natural que, ao ser multiplicado por 7, origina o produto mais próximo e menor que 38 é 5.

Esquema. Multiplicação na horizontal 5 vezes 7 igual a 35. Seta amarela partindo de 35, indicando que 35 é menor que 38 e que 38 menos 35 é igual a 3.

Assim, 38 : 7 é uma divisão com quociente igual a 5 e resto igual a 3. Observe:

Algoritmo da divisão. Á esquerda o número 38 e seta indicando que este número é o dividendo. À direita, na chave, o número 7 e seta indicando que este número é o divisor. Abaixo da chave o número 5 e seta indicando que este número é o quociente. À esquerda do 5 e abaixo do 38, o número 3 e seta indicando que este número é o resto.

Quando o resto da divisão é diferente de zero, dizemos que a divisão é não exata.

Relação fundamental da divisão

Na divisão de 38 por 7, observamos que: 38 = 5 7 + 3

Em qualquer divisão, o dividendo é igual ao quociente multiplicado pelo divisor mais o resto. Essa relação é chamada de relação fundamental da divisão:

dividendo = quociente divisor + resto

Observações

1. O resto de uma divisão entre dois números naturais é sempre menor que o divisor. Observe alguns exemplos a seguir.

a)

Esquema. Algoritmo da divisão. O dividendo é 25, o divisor é 3, o quociente é 8 e o resto é 1. Seta amarela partindo do resto 1, indicando que 1 é menor que 3.

b)

Esquema. Algoritmo da divisão. O dividendo é 52, o divisor é 8, o quociente é 6 e o resto é 4. Seta amarela partindo do resto 4, indicando que 4 é menor que 8.

c)

Esquema. Algoritmo da divisão. O dividendo é 27, o divisor é 35, o quociente é 0 e o resto é 27. Seta amarela partindo do resto 24, indicando que 27 é menor que 35.

2. A divisão exata é a operação inversa da multiplicação. Observe os exemplos:

a) 4 5 = 20

20 dividido por 5 = 4

b) 7 6 = 42

42 dividido por 6 = 7

3. A divisão de zero por qualquer número natural diferente de zero é sempre zero.

a) 0 dividido por 3 = 0

b) 0 dividido por 25 = 0

c) 0 dividido por .1587 = 0

4. O quociente de 6 : 0 deveria ser o número que, multiplicado por zero, resultasse em 6. Não há número que multiplicado por zero resulte em 6; logo, é impossível efetuar 6 dividido por 0.Esse raciocínio é válido para qualquer outra divisão por zero. Podemos dizer que é impossível dividir por zero, ou seja, o zero nunca pode ser divisor.

Atividades

Faça as atividades no caderno.

65. Determine o quociente e o resto de cada uma das divi­sões a seguir.­

a) 37 dividido por 15

b) 108 dividido por 32

c) 2 332 dividido por 41

d) 5 600 dividido por 95

e) 17 890 dividido por 100

f) 1 847 dividido por 28

66. Copie as divisões no caderno, substituindo cada

Ilustração. Quadradinho cinza.

pelo número que falta.

a)

Esquema. Algoritmo da divisão. O dividendo é 48, o divisor é 9, o quociente é 5 e há um quadradinho cinza ocultando o resto.

b)

Esquema. Algoritmo da divisão. Há um quadradinho cinza ocultando o dividendo, o divisor é 7, o quociente é 7 e o resto é 4.

c)

Esquema. Algoritmo da divisão. Há um quadradinho cinza ocultando o dividendo, o divisor é 13, o quociente é 8 e o resto é 6.

d)

Esquema. Algoritmo da divisão. O dividendo é 54, o divisor é 8, há um quadradinho cinza ocultando o quociente e o resto é 6.

e)

Esquema. Algoritmo da divisão. Há um quadradinho cinza ocultando o dividendo, o divisor é 7, o quociente é 9 e o resto é 2.

f)

Esquema. Algoritmo da divisão. O dividendo é 78, há um quadradinho cinza ocultando o divisor, o quociente é 5 e o resto é 3.

67.

Ícone de atividade em dupla.

 

Ícone calculadora e softwares.

Junte-se a um colega e resolvam o se­guinte pro­blema.

Luísa quer dividir 528 por 132 utilizando a calculadora, mas há um problema: das teclas das operações, só funciona a da subtração. Como Luísa deverá fazer o cálculo para obter o resultado da divisão?

68. Na divisão de .60000 por .1800, quais são o quociente e o resto?

69. Em um colégio, há 540 estudantes, que serão divididos em grupos de 37 para participar de um desfile.

a) Quantos grupos completos serão formados?

b) Quantos estudantes seriam necessários para completar mais um grupo?

70. Responda às questões.

a) Qual é o quociente da divisão de zero por 10?

b) Qual é o quociente da divisão de 10 por zero?

71.

Ícone calculadora e softwares.

Utilizando uma calculadora, efetue a divisão de 8 por 0. O que apareceu no visor da calculadora?

72.

Ícone de atividade em dupla.

Junte-se a um colega e resolvam o seguinte pro­blema.

A carga máxima permitida em um elevador é 500 quilogramas. Qual é o número mínimo de viagens necessárias para que uma pessoa com 75 quilogramas possa transportar 45 caixas de 30 quilogramas cada uma?

73.

Ícone de elaboração de problemas.

Maria utilizou uma calculadora e fez os seguintes cálculos:

Ilustração. Teclas de calculadora, 8, 1, vezes 9, igual.

Elabore um problema que possa ser resolvido utilizando a operação inversa da multiplicação que Maria efetuou.

5 Potenciação com números naturais

Para representar uma multiplicação em que todos os fatores são iguais, podemos usar a potenciação.

Podemos representar, por exemplo, a multiplicação 4 4 4 4 assim: 4elevado a 4 (lemos: “quatro elevado à quarta potência” ou “quatro à quarta”). Observe:

Esquema. Cálculo na horizontal. 4 vezes 4 vezes 4 vezes 4 igual a 4 elevado a 4. Seta amarela para o 4 que está sobrescrito, indicando que corresponde à quantidade de vezes que o fator se repete e seta amarela para o 4 que não está sobrescrito, indicando que corresponde ao fator que se repete na multiplicação.

De modo geral, na potenciação com números naturais, a base é o fator que se repete na ­multiplicação, o expoente indica a quantidade de vezes que o fator se repete e a potência é o resultado da operação.

Com isso, para o exemplo anterior, temos:

Esquema. Cálculo na horizontal. 4 elevado a 4 igual a 256. Seta amarela para o 4 que está sobrescrito, indicando base. Seta amarela para o 4 que está sobrescrito, indicando expoente. Seta amarela para o 256, indicando potência.

Outros exemplos podem ser:

a) 3elevado a 5 = 3 3 3 3 3 = 243

b) 0elevado a 6 = 0 0 0 0 0 0 = 0

c) 1elevado a 8 = 1 1 1 1 . 1 1 1 1 = 1

d) 10elevado a 3 = 10 10 10 = .1000

Observação

Quando o expoente é igual a 1, a potência é igual à base. E, quando o expoente é igual a zero, com a base diferente de zero, a potência é igual a 1. Por exemplo:

a) 5elevado a 1 = 5

b) 31elevado a 1 = 31

c) 60elevado a 0 = 1

d) 759elevado a 0 = 1

Leitura de potências

Observe como lemos algumas potências.

a) 3elevado a 2: “três elevado à segunda potência

b) 6elevado a 7: “seis elevado à sétima potência

c) 2elevado a 3: “dois elevado à terceira potência

d) 4elevado a 9: “quatro elevado à nona potência

As potências com expoentes 2 e 3 podem ser lidas de outra maneira. Vamos estudá-las.

Potência de expoente 2 ou quadrado de um número

Por causa de sua representação geométrica, as potências de expoente 2 têm nomes especiais. Acompanhe os exemplos.

a)

Esquema horizontal mostrando como representar geometricamente a potência 1 elevado a 2. À esquerda 1 elevado a 2 À direita, duas maneiras de ler: um elevado ao quadrado ou quadrado de um. À direita, seta para a direita com a cota: Representação geométrica. À direita, quadrado azul com cota vertical 1 e cota horizontal 1. Abaixo do quadrado, o seguinte cálculo: 1 elevado ao quadrado igual a 1 vezes 1 igual a 1.

b)

Esquema horizontal mostrando como representar geometricamente a potência 2 elevado a 2. À esquerda 2 elevado a 2 À direita, duas maneiras de ler: dois elevado ao quadrado ou quadrado de dois. À direita, seta para a direita com a cota: Representação geométrica. À direita, quadrado azul dividido em 4 quadrados menores com cota vertical 2 e cota horizontal 2. Abaixo do quadrado, o seguinte cálculo: 2 elevado ao quadrado igual a 2 vezes 2 igual a 4.

Observação

Um número natural é considerado um quadrado perfeito quando é o produto de dois números naturais iguais.

a) 1 1 = 1

b) 2 2 = 4

c) 3 3 = 9

d) 4 4 = 16

e) 5 5 = 25

Os números 1, 4, 9, 16 e 25 são exemplos de quadrados perfeitos.

Potência de expoente 3 ou cubo de um número

Da mesma fórma que as potências de expoente 2, as potências de expoente 3 também recebem nomes especiais. Acompanhe os exemplos.

a)

Esquema horizontal mostrando como representar geometricamente a potência 1 elevado a 3. À esquerda 1 elevado a 3 À direita, duas maneiras de ler: um elevado ao cubo ou cubo de um. À direita, seta para a direita com a cota: Representação geométrica. À direita, cubo cinza com cota vertical 1, cota horizontal 1 e cota de profundidade 1. Abaixo do cubo, o seguinte cálculo: 1 elevado ao cubo igual a 1 vezes 1 vezes 1 igual a 1.

b)

Esquema horizontal mostrando como representar geometricamente a potência 2 elevado a 3. À esquerda 2 elevado a 3 À direita, duas maneiras de ler: dois elevado ao cubo ou cubo de dois. À direita, seta para a direita com a cota: Representação geométrica. À direita, cubo cinza dividido em cubos menores com cota vertical 2, cota horizontal 2 e cota de profundidade 2. Abaixo do cubo, o seguinte cálculo: 2 elevado ao cubo igual a 2 vezes 2 vezes 2 igual a 8.

Potências de base 10

Observe as seguintes potências de base 10:

a) 10elevado a 1 = 10

b) 10elevado a 3 = 10 10 10 = .1000

c) 10elevado a 5 = 10 10 10 10 10 = 1.00000

Nesses exemplos, percebe-se que as potências de base 10, com expoentes naturais, são iguais a um número formado pelo algarismo 1 seguido de tantos zeros quantas forem as unidades do expoente.

Decomposição de um número usando potências de base 10

Considere, por exemplo, os números 54, 857 e .56948. Decompondo-os e aplicando potências de 10, podemos escrever:

a) 54 = 50 + 4 = 5 10elevado a 1 + 4 10elevado a 0

b) 857 = 800 + 50 + 7 = 8 100 + 5 10 + 7 = 8 10elevado a 2 + 5 10elevado a 1 + 7 10elevado a 0

c) .56948 = .50000 + .6000 + 900 + 40 + 8 = 5 10elevado a 4 + 6 10elevado a 3 + 9 10elevado a 2 + 4 10elevado a 1 + 8 10elevado a 0

Ilustração. Ícone de lupa com um olho no meio.

Veja que interessante

Faça a atividade no caderno.

É comum, principalmente em Física, escrever números com muitos algarismos usando potência de base 10.

Tomando como exemplo a velocidade da luz, que é, aproximadamente, trezentos milhões de metros por segundo, temos:

..300000000 de metros por segundo ou 3 ..100000000 metros por segundo ou 3 10elevado a 8 metros por segundo

Atividade

Escreva os números .700000 e ..2560000 utilizando potências de base 10.

Atividades

Faça as atividades no caderno.

74. Calcule o valor das potências.

a) 3elevado a 5

b) 4elevado a 3

c) 14elevado a 2

d) 2elevado a 5

e) 10elevado a 3

f) 1elevado a 6

g) 11elevado a 2

h) 15elevado a 0

i) 17elevado a 1

j) 0elevado a 5

k) 50elevado a 1

l) 20elevado a 2

75. Escreva como se leem as potências a seguir.

a) 7elevado a 2

b) 9elevado a 3

c) 10elevado a 4

d) 13elevado a 5

76. Calcule:

a) o quadrado de 13;

b) o cubo de 7;

c) três elevado à sexta potência.

77. Calcule o valor de 2elevado a 5 menos 5elevado a 2.

78. Escreva no caderno os números a seguir usando potências de base 10.

a) .600000

b) ..4500000

c) ...8000000000

d) .8700

79. O professor Daniel escreveu na lousa duas sequências com potências dos nú­meros 2 e 3.

lustração. Quadro de giz. À esquerda,  cálculos de potências de base 2. À direita, cálculos de potências de base 3. À esquerda, na primeira linha: 2 elevado a 5 igual a 32 Abaixo, 2 elevado a 4 igual a 16. Abaixo, 2 elevado a 3 igual a 8. Abaixo, 2 elevado a 2 igual a 4. Abaixo, 2 elevado a 1 igual a um quadrado roxo. Abaixo, 2 elevado a 0 igual a um quadrado roxo. Entre 32 e 16, seta indicando divisão por 2. Entre 16 e 8, seta indicando divisão por 2. Entre 8 e 4, seta indicando divisão por 2. Entre 4 e quadrado roxo, seta indicando divisão por 2. Entre quadrado roxo e quadrado roxo, seta indicando divisão por 2. À direita, na primeira linha: 3 elevado a 5 igual a 243. Abaixo, 3 elevado a 4 igual a 81. Abaixo, 3 elevado a 3 igual a 27. Abaixo, 3 elevado a 2 igual a 9. Abaixo, 3 elevado a 1 igual a um quadrado roxo. Abaixo, 3 elevado a 0 igual a um quadrado roxo. Entre 243 e 81, seta indicando divisão por 3. Entre 81 e 27, seta indicando divisão por 3. Entre 27 e 9, seta indicando divisão por 3. Entre 9 e quadrado roxo, seta indicando divisão por 3. Entre quadrado roxo e quadrado roxo, seta indicando divisão por 3.

Que números deveriam ser colocados nos quadrinhos?

80. Expresse, em potência de base 10, o núme­ro de cubinhos que formam o cubo maior da figura.

Figura geométrica. Cubo azul, dividido em mil cubos menores. São 10 camadas e cada camada tem cubos dispostos em 10 linhas com 10 cubos cada.

81. Determine em cada caso a potência de maior valor.

a) 100elevado a 1 ou 1elevado a 100

b) 80elevado a 0 ou 0elevado a 80

82.

Ícone de cálculo mental.

Calcule mentalmente as potências.

a) 10elevado a 5

b) 10elevado a 2

c) 8 10elevado a 2

d) 52 10elevado a 3

83. Decomponha os números usando potências de 10.

a) 938

b) .4078

c) .7952

d) .60000

84. Determine o valor de 5elevado a 4 e 5elevado a 6, sabendo que 5elevado a 5 é igual a .3125. Em cada um dos casos, faça apenas um cálculo.

85. Em uma caixa como a da figura a seguir, Pedro distribuiu bolinhas de gude. Na primeira casa, ele colocou uma ­bo­linha e, em cada uma das casas seguintes, o dôbro do número de bolinhas da anterior.­

Quantas bolinhas Pedro colocou na oitava casa?

Ilustração. Menino oriental de cabelo preto, óculos e camiseta azul e branca listrada. Ele está ajoelhado na frente de uma caixa retangular com nove espaços.

Expressões numéricas com potenciações

Agora, vamos estudar expressões numéricas envolvendo as operações com os números ­naturais que vimos até aqui.

Para calcular o valor de qualquer expressão numérica que contenha as operações de adição, subtração, multiplicação, divisão e potenciação, a seguinte ordem deve ser obedecida:

1º) potenciações;

2º) multiplicações e divisões abre parêntesesna ordem em que aparecemfecha parênteses;

3º) adições e subtrações abre parêntesesna ordem em que aparecemfecha parênteses.

Vale lembrar que, em expressões com sinais de associação, estes devem ser eliminados na seguinte ordem: parênteses, colchetes e chaves.

Observe os exemplos a seguir.

a)

Esquema. Cálculo de 8elevado a 3 menos 9, dividido por 3, igual. Abaixo, igual, 512 menos 9 dividido por 3, igual. Fio amarelo indicando o número 512 como resultado de 8 elevado a 3. Abaixo, igual , 512 menos 3, igual. Fio amarelo indicando o número 3 como resultado de 9 dividido por 3. Abaixo, igual, 509. Fio amarelo indicando o número 509 como resultado de 512 menos 3.

b)

Esquema. Cálculo de 5 elevado a 3 mais, abre parênteses, 8 menos 3, fecha parênteses, vezes 2, igual. Abaixo, igual, 125 mais 5 vezes 2, igual. Fio amarelo indicando o número 125 como resultado de 5 elevado a 3. Fio amarelo indicando o número 5 como resultado de 8 menos 3. Abaixo, igual , 125 mais 10, igual. Fio amarelo indicando o número 10 como resultado de 5 vezes 2. Abaixo, igual, 135. Fio amarelo indicando o número 135 como resultado de 125 mais 10.

c)

Esquema. Cálculo de 2 elevado a 2 vezes 2 elevado a 4 dividido por, abre parênteses, 2 elevado a 3, fecha parênteses, elevado a 2, igual. Abaixo, igual, 4 vezes 16 dividido por, abre parênteses, 8, fecha parênteses, elevado a 2, igual. Fio amarelo indicando o número 4 como resultado de 2 elevado a 2. Fio amarelo indicando o número 16 como resultado de 2 elevado a 4. Fio amarelo indicando o número 8 como resultado de 2 elevado a 3. Abaixo, igual , 64 dividido por 64, igual. Fio amarelo indicando o número 64 como resultado de 4 vezes 16. Fio amarelo indicando o número 64 como resultado de 8 elevado a 2. Abaixo, igual, 1. Fio amarelo indicando o número 1 como resultado de 64 dividido por 64.

d)

Esquema. Calculo de  3 elevado a 2, vezes, abre chaves, 5 mais, abre colchetes, 3 mais, abre parênteses, 10 dividido por 2, fecha parênteses, fecha colchetes, fecha chaves, igual. Abaixo, igual, 9 vezes, abre chaves, 5 mais, abre colchetes, 3 mais 5, fecha colchetes, fecha chaves, igual. Fio amarelo indicando o número 9 como resultado de 3 elevado a 2. Fio amarelo indicando o número 5 como resultado de 10 dividido por 2. Abaixo, igual, 9 vezes, abre chaves, 5 mais 8, fecha chaves, igual.  Fio amarelo indicando o número 8 como resultado de 3 mais 5. Abaixo, igual, 9 vezes 13, igual.  Fio amarelo indicando indicando o número 13 como resultado de 5 mais 8. Abaixo, igual, 117.  Fio amarelo indicando o número 117 como resultado de 9 vezes 13.

Atividades

Faça as atividades no caderno.

86. Calcule o valor das expressões numéricas.

a) 20 menos abre parênteses1elevado a 4 6 + 2elevado a 3fecha parênteses

b) abre parênteses2elevado a 4 menos 3 4fecha parênteses dividido por 2 + 5elevado a 2 dividido por 5

c) 10elevado a 2 dividido por 5elevado a 2 + 5elevado a 0 2elevado a 2 menos 2elevado a 3

d) abre chave6elevado a 2 + 2 abre colchete2elevado a 3 + 2 abre parênteses3elevado a 2 1elevado a 3fecha parêntesesfecha colchete menos 2elevado a 5fecha chave 5elevado a 0

e) 55 menos abre parênteses3 2 + 1fecha parênteseselevado a 2 + abre parênteses4elevado a 2 + 3elevado a 2fecha parênteses dividido por 5elevado a 2 menos 1elevado a 6

87. Calcule o valor de A + B sabendo que:

a = abre parênteses3 2 menos 1fecha parênteseselevado a 2e

B = abre parênteses2elevado a 2 + 1fecha parênteses abre parênteses5 + 2elevado a 3fecha parênteses

88. Calcule a diferença entre o dôbro do cubo de 8 e o triplo do quadrado de 17.

89.

Ícone de elaboração de problemas.

 

Ícone de atividade em dupla.

Elabore um problema que possa ser resolvido por meio de uma expressão numérica com potenciações. Depois troque seu problema com um colega e resolva o problema proposto por ele.

90.

Ícone de atividade em dupla.

Reúna-se com um colega, resolvam o ­problema a seguir e justifiquem a resposta.

Pensem em um número diferente de zero. Multipliquem-no por 3 e acrescentem 1 ao resultado. Multipliquem o novo ­resultado­ por 3 e adicionem o produto com o número em que vocês pensaram. O resultado terminará em 3. Eliminem o 3.

Ilustração. Mulher de lenço vermelho na cabeça, pulseiras douradas, brincos de argolas e blusa com mangas bufantes na cor rosa. Ela está de frente para uma mesa redonda com toalha azul. Sobre a mesa, uma bola de cristal. Ela diz: O número que ficar será aquele em que vocês pensaram.

6 Arredondamentos e estimativas

Em muitas situações, não é necessário saber o valor exato de uma operação. Acompanhe o exemplo a seguir.

Paulo foi ao supermercado com uma cédula de 200 reais. Antes de passar no caixa, ele verificou se teria ­dinheiro ­suficiente para pagar a compra. Analise o que ele fez.

Ilustração. Rapaz de cabelo castanho, camisa laranja olha para as compras de supermercado no carrinho e pensa: Vamos lá... 10 do pacote de arroz mais 10 do sabão em pó mais 10 do papel higiênico mais 10 do iogurte mais 10 da margarina dá 50. 50 mais 40 da carne dá 90. Mais 30 do peixe dá 120. Mais 20 do frango dá 140. Mais 10 do desodorante fica 150. Como 150 é menor que 200, então vai dar para comprar tudo! Será que estou esquecendo de algo? Vou conferir a lista...

Ao fazer os cálculos, Paulo utilizou o arredondamento dos preços dos produtos para fazer a ­estimativa do valor total gasto na compra.

Esquema. Na primeira linha, adição na horizontal: Cálculo do valor total estimado; 10 mais 10 mais 10 mais 10 mais 10 mais 40 mais 30 mais 20 mais 10 igual a 150. Na segunda linha, adição na horizontal: Cálculo do valor total; 12 mais 7 mais 13 mais 11 mais 6 mais 37 mais 31 mais 22 mais 13 igual a 152. As parcelas e a soma das duas adições estão alinhadas. Entre a parcela 10 da primeira adição e a parcela 12 da segunda, fio vertical indicando arroz. Entre a parcela 10 da primeira adição e a parcela 7 da segunda, fio vertical indicando sabão em pó. Entre a parcela 10 da primeira adição e a parcela 13 da segunda, fio vertical indicando papel higiênico. Entre a parcela 10 da primeira adição e a parcela 11 da segunda, fio vertical indicando iogurte. Entre a parcela 10 da primeira adição e a parcela 6 da segunda, fio vertical indicando margarina. Entre a parcela 40 da primeira adição e a parcela 37 da segunda, fio vertical indicando carne. Entre a parcela 30 da primeira adição e a parcela 31 da segunda, fio vertical indicando peixe. Entre a parcela 20 da primeira adição e a parcela 22 da segunda, fio vertical indicando frango. Entre a parcela 10 da primeira adição e a parcela 13 da segunda, fio vertical indicando desodorante.

Para arredondar um número para determinada ordem decimal, temos que observar o primeiro algarismo à direita da ordem escolhida:

se for 0, 1, 2, 3 ou 4, mantém-se o algarismo da ordem (arredondando o número “para baixo”);

se for 5, 6, 7, 8 ou 9, arredonda-se “para cima”, ou seja, adiciona-se 1 ao algarismo da ordem.

Depois, devem-se substituir por zeros os algarismos à direita do algarismo da ordem.

A seguir temos dois exemplos de arredondamento.

a) Arredondar o número 178 para a ordem das dezenas mais próxima:

Esquema. À esquerda, número 178 com fio indicando que o algarismo 7 é da ordem das dezenas.  O algarismo 8 está na cor laranja. À direita o número 180 destacado. Entre os números 178 e 180, fio alaranjado, saindo do algarismo 8 de cor laranja de 178 e indo para o algarismo 8 de 180. O fio tem a cota: Como 8 é maior que 5, então adiciona-se 1 ao algarismo da ordem das dezenas.

b) Arredondar o número ..29428742 para a ordem de centena de milhar mais próxima:

Esquema. À esquerda, número 29 428 472 com fio indicando que o algarismo 2 é da ordem da centena de milhar.  O algarismo 2 está na cor laranja. À direita o número 29 400 000 destacado. Entre os números 29 428 472 e 29 400 000, fio alaranjado, saindo do algarismo 2 de cor laranja de 29 428 472   e indo para o algarismo 4 de 29 400 000. O fio tem a cota: Como 2 é menor que 5, então mantemos o algarismo da ordem.

Atividades

Faça as atividades no caderno.

91. Faça os arredondamentos conforme indicado em cada item.

a) 369, para a centena mais próxima.

b) .357896, para a dezena de milhar mais próxima.

c) 111, para a centena mais próxima.

d) 111, para a dezena mais próxima.

92. Calcule o valor aproximado da expressão numérica

Expressão numérica. 323 dividido por 111 mais 32.

93.

Ícone de atividade em dupla.

Responda às questões no caderno.

a) Cite exemplos de situações em que utilizamos arredondamentos e estimativas.

b)

Ícone de elaboração de problemas.

 

Ícone de atividade em dupla.

 Elabore um problema e resolva-o usando estimativa. Peça a um colega que resolva o problema elaborado por você usando também estimativa. Agora, compare as resoluções.

94.

Ícone de cálculo mental.

Maria precisa comprar uma geladeira e um fogão com um orçamento de R$ 1.850,00mil oitocentos e cinquenta reais. Ela pesquisou os preços dos produtos em duas lojas. Observe os preços, faça os cálculos mentalmente e, depois, responda às questões.

Ilustração. Loja A. Refrigerador branco com cartaz escrito: PROMOÇÃO R$ 1.254,00. À direita, fogão branco com cartaz escrito: PROMOÇÃO R$ 579,00. Loja B. Refrigerador branco com cartaz escrito: OFERTA R$ 1.554,00. À direita, fogão branco com cartaz escrito: OFERTA R$ 399,00.

a) Se Maria tivesse que comprar os eletro­domésticos na mesma loja, em qual loja ela conseguiria realizar a compra?

b) Se Maria comprasse os eletrodomésticos em lojas diferentes, qual seria a melhor combinação e o valor total estimado da compra?

Ícone, resolvendo em equipe.

Resolvendo em equipe

Faça a atividade no caderno.

(ó bê mépi) Vovô Eduardo comemorou todos os seus aniversários a partir dos 40 anos colocando, no bolo, velinhas em fórma de algarismos de 0 a 9 para indicar sua idade. Primeiro, ele comprou as velinhas de números 0 e 4. Ele sempre guardou as velinhas para usar nos próximos ­aniversários, comprando uma nova somente quando não era possível indicar sua idade com as guardadas. Hoje vovô Eduardo tem 85 anos. Quantas velinhas ele comprou ­até hoje?

Ilustração. Idoso branco de cabelos grisalhos, camisa listrada branca e azul listrada e suspensório. Ele levanta os óculos e olha para um bolo redondo na cor rosa a sua frente com vela de 85 anos acesa.

a) 10

b) 11

c) 13

d) 14

e) 16

Interpretação e identificação dos dados

• Analise as informações do enunciado e anote aquelas que julgar relevantes para a resolução do problema.
• Responda:
I. Após comprar as velinhas 0 e 4, quais foram as próximas três velinhas que vovô Eduardo precisou comprar?
II. Até completar 50 anos, ele precisou comprar mais velinhas de número 4?

Plano de resolução

• Calcule a quantidade de velinhas compradas para as dez primeiras comemorações de aniversário e para as comemorações de 50 a 59 anos.
• A quantidade de velinhas de aniversário compradas em cada década foi a mesma?
• Considerando as informações coletadas, elabore um esquema que represente um possível processo de resolução do problema.

Resolução

• Forme um grupo com três colegas.
• Cada integrante do grupo deverá apresentar aos demais seu plano de resolução.
• O grupo deve discutir as diferenças e as semelhanças de cada plano e escolher um dos planos para a execução do processo de resolução.
Observação
Resolvam o problema de forma coletiva, mas façam o registro individual no caderno.

Verificação

• O grupo deve reler o problema e verificar se todas as condições do enunciado foram satisfeitas.

Apresentação

• O professor vai escolher um dos grupos para apresentar o plano desenvolvido e a solução obtida. Durante a exposição, os outros grupos devem observar suas resoluções e verificar se os resultados obtidos estão de acordo com o que foi apresentado.

Revisão dos conteúdos deste capítulo

Faça as atividades no caderno.

Adição com números naturais

A adição pode ser empregada com a ideia de juntar quantidades ou de acrescentar uma quantidade a outra.

Esquema. Adição horizontal. 10 mais 15 igual a 25. Fio amarelo indicando os números 10 e 15 como parcelas. Fio amarelo indicando o número 25 como soma ou total.

Algumas propriedades da adição

Comutativa: em uma adição de números naturais, a ordem das parcelas não altera a soma.

Associativa: Em uma adição de três ou mais números naturais, podemos associar as parcelas de diferentes modos sem alterar a soma.

Elemento neutro: O zero, quando adicionado a outro número natural qualquer, resulta sempre nesse outro número. Ou seja, o zero como parcela da adição não altera o valor da soma. Por isso, ele é chamado de elemento neutro da adição.

1. Determine o resultado das adições.

a) .1231 + .3420

b) .4231 + 335 + .1320

c) .21230 + .1210 + 589

d) .112250 + .217817

e) .420789 + .1118 + .2981

2. Copie as sentenças em seu caderno e complete-as.

a) 87 + 91 = 91 +

Ilustração. Retângulo cinza.

b) .1250 + 0 = 0 +

Ilustração. Retângulo cinza.

c) .11388 + .2188 = .2188 +

Ilustração. Retângulo cinza.

d) .25257 + .9235 =

Ilustração. Retângulo cinza.

+ .22257

3. Em três meses Luana conseguiu juntar dinheiro para comprar uma bicicleta. No primeiro mês, juntou R$ 225,00duzentos e vinte e cinco reais; no segundo mês, R$ 218,00duzentos e dezoito reais; e no terceiro, R$ 175,00cento e setenta e cinco reais. Sabendo que ela gastou todo esse valor na compra, qual foi o preço da bicicleta?


Subtração com números naturais

A subtração pode ser empregada com a ideia de tirar uma quantidade de outra, de completar­ uma quantidade ou, ainda, de comparar duas quantidades.

Esquema. Subtração horizontal, 15 menos 10 é igual a 5. Fio amarelo indicando o número 15 como minuendo, fio amarelo indicando o número 10 como subtraendo, fio amarelo indicando o número 5 como resto ou diferença.

Relação fundamental da subtração

Se o minuendo menos o subtraendo é igual ao resto, então o subtraendo mais o resto é igual ao minuendo.

4. Determine o resultado das subtrações.

a) .7110 menos .1899

b) .8890 menos .6380

c) .12777 menos .11756

d) .38210 menos .15791

5. Copie as sentenças em seu caderno e complete-as.

a) 571 menos

Ilustração. Quadradinho cinza.

= 289

b) .1315 menos

Ilustração. Quadradinho cinza.

= 872

c)

Ilustração. Quadradinho cinza.

menos .1901 = 912

d)

Ilustração. Quadradinho cinza.

menos 512 = .1003

6. Em uma subtração, o resto é 439 e o subtraendo é 212. Qual é o valor do minuendo?

Expressões numéricas com adições e subtrações

Nas expressões numéricas em que não há parênteses, as operações de adição e de subtração devem ser feitas na ordem em que aparecem.

Nas expressões numéricas em que há parênteses, eles indicam as operações que ­devem ser feitas primeiro.

7. Calcule o valor de cada expressão numérica.

a) abre parênteses25 menos 18 + 13fecha parênteses + 11

b) 45 + abre parênteses70 menos 36fecha parênteses + 12

c) abre parênteses115 menos 82fecha parênteses menos abre parênteses15 + 18fecha parênteses + 9

8. Joana comprou uma geladeira que custa R$ 1.825,00mil oitocentos e vinte e cinco reais. Ela vai pagar em duas prestações. Se ela pagou R$ 1.075,00mil setenta e cinco reais na primeira prestação, qual será o valor da segunda?

9. No estoque de uma loja, havia uma.duzentas e cinquenta unidades de determinado produto. No mês de janeiro foram vendidas trezentas e sessenta e oito unidades, no mês de fevereiro, quatrocentas e vinte e cinco unidades. Para repor o estoque, no início de março, foram adicionadas quinhentas e sessenta unidades desse produto ao estoque. Quantas ­unidades desse produto há agora no estoque da loja?


Multiplicação com números naturais

A multiplicação pode ser empregada com a ideia de adição de parcelas iguais, a de proporcionalidade, a de disposição retangular ou a de combinação.

Esquema. Multiplicação horizontal, 10 vezes 15 é igual a 150. Fio amarelo indicando os números 10 e 15 como fatores, fio amarelo indicando o número 150 como produto.

Algumas propriedades da multiplicação

Comutativa: Em uma multiplicação de números naturais, a ordem dos fatores não altera o produto.

Associativa: Em uma multiplicação com mais de dois números naturais, podemos associar os fatores de modos diferentes sem alterar o produto.

Elemento neutro: O número 1, quando multiplicado por outro número natural qualquer, resulta sempre nesse outro número. Ou seja, o 1 como fator da multiplicação não altera o valor do produto. Por isso, ele é chamado elemento neutro da multiplicação.

Distributiva: Para multiplicar um número natural por uma adição (ou subtração) com dois ou mais termos, podemos multiplicar esse número por cada um dos termos da adição (ou da subtração) e adicionar (ou subtrair) os resultados obtidos.

10. Efetue.

a) 45 12

b) 18 25

c) 320 8

d) 368 10

e) 815 18

f) .1236 50

11.

Ícone de cálculo mental.

 Calcule mentalmente o resultado de cada multiplicação e registre no caderno.

a) 18 10

b) 92 100

c) 112 10

d) 310 100

e) 15 .1000

f) .1020 10

12. Leandro comprou uma motocicleta e vai pagar em 36 prestações iguais de R$ 585,00quinhentos e oitenta e cinco reais. Quantos reais Leandro vai pagar por essa motocicleta?

13. Uma torneira com vazamento desperdiça 300 mililitros de água por hora. Quantos mililitros de água serão desperdiçados em 1 dia?

14. Copie as sentenças em seu caderno e complete-as usando as propriedades da multiplicação.

a) 28 17 =

Ilustração. Retângulo cinza.

28

b) 22 abre parênteses10 13fecha parênteses = abre parênteses22

Ilustração. Retângulo cinza.

fecha parênteses 13

c) 115 abre parênteses

Ilustração. Retângulo cinza.

18fecha parênteses = abre parênteses

Ilustração. Retângulo cinza.

100fecha parênteses

Ilustração. Retângulo cinza.

d) 54 abre parênteses21 12fecha parênteses = abre parênteses54

Ilustração. Retângulo cinza.

fecha parênteses

Ilustração. Retângulo cinza.

e) 890 77 =

Ilustração. Retângulo cinza.

890

f) .5801

Ilustração. Retângulo cinza.

= 99 .5801

15. Calcule o valor das expressões de duas maneiras.

a) 9 abre parênteses15 + 11fecha parênteses

b) 12 abre parênteses18 menos 5fecha parênteses

c) 15 abre parênteses10 + 12fecha parênteses

d) 10 abre parênteses27 menos 12fecha parênteses


Divisão com números naturais

A divisão pode ser empregada com a ideia de repartir em partes iguais ou para descobrir quantas vezes uma quantidade cabe em outra.

Esquema. Algoritmo da divisão. Á esquerda o número 155. À direita, na chave, o número 10. Fio amarelo indicando o número 155 como dividendo, fio amarelo indicando o número 10 como divisor. Abaixo da chave o número 15. À esquerda do 15 e abaixo do número 155, o número 5. Fio amarelo indicando o número 5 como resto, fio amarelo indicando o número 15 como quociente.

Quando o resto da divisão é zero, dizemos que a divisão é exata; quando é diferente de zero, a divisão é não exata.

Relação fundamental da divisão

dividendo = quociente divisor + resto

16. Calcule o quociente e o resto de cada divisão.

a) 155 dividido por 10

b) 212 dividido por 6

c) 550 dividido por 15

d) 198 dividido por 9

e) .1213 dividido por 10

f) .2120 dividido por 5

17. Copie no caderno cada uma das divisões, substituindo cada

Ilustração. Quadradinho cinza.

pelo número desconhecido.

a)

Esquema. Algoritmo da divisão. O dividendo é 59, o divisor é 8, o quociente é 7, há um quadradinho cinza ocultando o resto.

b)

Esquema. Algoritmo da divisão. Há um quadradinho cinza ocultando o dividendo, o divisor é 5, o quociente é 12 e o resto é 3.

c)

Esquema. Algoritmo da divisão. O dividendo é 65, o divisor é 12, o quociente é 5, há um quadradinho cinza ocultando o resto.

d)

Esquema. Algoritmo da divisão. Há um quadradinho cinza ocultando o dividendo, o divisor é 7, o quociente é 11 e o resto é 5.

18. Mariana comprou um pacote de viagens para as férias de final de ano. Ela vai pagar esse pacote em 12 prestações iguais. Se o pacote de viagens custou R$ 10.800,00dez mil oitocentos reais, quanto Mariana vai pagar em cada prestação?

Expressões numéricas com as quatro operações

Expressões numéricas podem envolver as operações aritméticas de adição, subtração, multiplicação e divisão. Quando essas operações estão na mesma expressão, seguimos uma ordem para resolvê-las:

1º) a multiplicação ou a divisão, na ordem em que aparecem na expressão;

2º) a adição e a subtração, também na ordem em que aparecem.

Além dos parênteses, podem aparecer outros sinais de associação na expressão numérica, que determinam a ordem de realização dos cálculos. Assim, calculamos:

1º) o que está dentro dos parênteses – abre parênteses fecha parênteses;

2º) o que está dentro dos colchetes – abre colchete fecha colchete;

3º) o que está dentro das chaves – abre chave fecha chave.

19. Calcule o valor de cada expressão numérica.

a) 12 + 11 5

b) 15 abre parênteses12 + 9fecha parênteses menos 7

c) abre parênteses98 menos 9 7fecha parênteses + abre parênteses12 + 18 dividido por 3fecha parênteses


Potenciação com números naturais

Para representar uma multiplicação em que todos os fatores são iguais, podemos usar a potenciação.

De modo geral, na potenciação com números naturais, a base é o fator que se repete na multiplicação, e o expoente indica a quantidade de vezes que esse fator se repete. Isso não vale para potências com expoente zero ou 1.

Esquema. Expressão numérica horizontal. 10 elevado a 2 igual a 10 vezes 10 igual a 100. De 10 elevado a 2 sai um fio de 10 para a cota 'base' e um fio de 2 para a cota 'expoente'. De 100 sai um fio com a cota 'potência'.

20. Calcule o valor das potências.

a) 3elevado a 2

b) 2elevado a 3

c) 9elevado a 3

d) 10elevado a 2

e) 60elevado a 0

f) 100elevado a 1

g) 30elevado a 2

h) 8elevado a 3

21. Escreva como se leem as potências a seguir.

a) 9elevado a 2

b) 10elevado a 5

c) 12elevado a 3

d) 5elevado a 4

22. Escreva no caderno os números a seguir usando potências de base 10.

a) 700

b) .380000

c) .45000

23. Um número quadrado perfeito pode ser representado geometricamente por um quadrado formado por quadradinhos menores.

Ilustração. Quadrado azul, no centro há um circulo azul escuro com cota horizontal 1. Ilustração. Quadrado azul dividido em 4 quadradinhos e no centro de cada quadradinho há um circulo azul escuro com cota horizontal 4. Ilustração. Quadrado azul dividido em 9 quadradinhos e no centro de cada quadradinho há um circulo azul escuro com cota horizontal 9. Ilustração. Quadrado azul dividido em 16 quadradinhos e no centro de cada quadradinho há um circulo azul escuro com cota horizontal 16.

a) Considerando a sequência 1, 4, 9 e 16, quais são os dois números quadrados perfeitos seguintes?

b) Quais são os números quadrados perfeitos situados entre 150 e 250?

24. Se 2elevado a 10 = .1024, qual é o valor de 2elevado a 9? E de 2elevado a 11?

Expressões numéricas com potenciações

As operações devem ser efetuadas na seguinte ordem:

1º) potenciações;

2º) multiplicações e divisões (na ordem em que aparecem);

3º) adições e subtrações (na ordem em que aparecem).

Vale lembrar que, em expressões com sinais de associação, estes devem ser eliminados na seguinte ordem: parênteses, colchetes e chaves.

25. Calcule o valor das expressões.

a) 115 menos abre parênteses5elevado a 2 2 + 2elevado a 3fecha parênteses

b) abre chave148 menos 3 abre colchete3elevado a 3 + 18 dividido por abre parênteses3elevado a 2 + 9fecha parêntesesfecha colchetefecha chave 2elevado a 3


Arredondamento e estimativas

Para arredondar um número para determinada ordem decimal, devemos observar o primeiro algarismo à direita da ordem escolhida:

se for 0, 1, 2, 3 ou 4, mantém-se o algarismo da ordem;

se for 5, 6, 7, 8 ou 9, arredonda-se “para cima”, ou seja, adiciona-se 1 ao algarismo da ordem.

Depois, devem-se substituir por zeros os algarismos à direita do algarismo da ordem.

26. Faça arredondamentos conforme indicado em cada item.

a) 598, para a centena mais próxima.

b) 891, para a centena mais próxima.

c) 891, para a dezena mais próxima.