Capítulo 2  Potenciação e radiciação

Trocando ideias

Ícone do tema CIÊNCIA E TECNOLOGIA.

Armazenamento em nuvem é a tecnologia que permite a usuários e empresas armazenar, manter e acessar dados via internet. A “nuvem” é um ambiente virtual em que podem ser armazenados os arquivos (textos, fotos, vídeos, músicas, planilhas etcétera) de modo que não ocupem o celular, o computador, o tablet ou qualquer outro dispositivo pessoal. Além disso, a nuvem possibilita ao usuário acessar esses arquivos a qualquer momento de qualquer lugar por meio da internet.

Ilustração. Ao centro duas nuvens. Da esquerda para a direita, estão conectados a essas nuvens por meio de fios: um notebook touchscreen, um desktop com CPU, um notebook convencional, um celular, um tablet, um desktop sem CPU e uma câmera fotográfica. Ao redor das nuvens estão presentes símbolos de sinais de wifi e de globos de internet.

Alguns serviços de armazenamento na nuvem disponibilizam 15 GBglossário de espaço gratuito para os usuários.

ícone de atividade em grupo.

 

ícone de atividade oral.

Você já armazenou algum arquivo na nuvem? O que você pensa a respeito dessa tecnologia? Converse com os colegas.

ícone de atividade oral.

Aproximadamente, quantos bytes alguns serviços de armazenamento na nuvem disponibilizam para os usuários?

Neste capítulo, vamos ampliar os conhecimentos sobre operações nos diversos conjuntos numéricos, fazendo uso da potenciação e da radiciação.

1 Potenciação

Quando um objeto é abandonado no vácuoglossário ou quando desconsideramos a ação do ar sobre esse objeto, ele cai em direção vertical, caracterizando um movimento chamado ­queda livre.

Um objeto em queda livre, a partir do repouso e durante uma medida de ­tempo (t ), em segundo, percorre uma medida de distância (d ), em metro. Para representar esse movimento, utiliza-se a seguinte fórmula:

Sentença matemática. d igual a fração de numerador g vezes t ao quadrado e denominador 2.

, em que g é a medida da aceleração da gravidade a que um ­objeto está submetido; considerando que esse objeto esteja próximo à superfície terrestre, essa medida é da ordem de 10 metros por segundo ao quadrado.

Considere a situação a seguir.

Se soltássemos uma esfera metálica de uma altura de medida igual a 320 métros (a mesma medida da altura da Torre Eiffel), a medida­ da distância aproxi­mada percorrida pela esfera após 2 segundos de queda seria:

 

Sentença matemática. d igual a fração de numerador 10 metros por segundo ao quadrado vezes t ao quadrado e denominador 2. Essa fração é igual a fração de numerador 10 metros por segundo ao quadrado vezes abe parênteses 2 segundos, fecha parênteses, elevado a 2 e denominador 2. Essa fração é igual a fração de numerador 10 metros por segundo ao quadrado vezes 4 segundos ao quadrado e denominador 2. Essa fração é igual a 20 metros.

Portanto, a esfera teria percorrido, aproximadamente, 20 métros após 2 segundos.

Esquema. Fotografia de uma torre treliça de ferro de base larga e topo estreito,  Na base há arcos. Na parte central há vãos que se parecem com trapézios. Do lado esquerdo da torre há uma cota vertical, indicando  torre tem 320 metros de altura. Também está representado um esfera em queda livre.
Torre Eiffel, Paris, França. Foto de 2022.

No cálculo realizado, para encontrar a medida da distância percorrida, utilizamos as operações de multiplicação, potenciação e divisão.

Vamos retomar o estudo da potenciação considerando os casos a seguir, em que a base da potência é um número real e o expoente é um número inteiro.

Observe esta sequência de figuras.

Esquema: Quadradinho verde. Abaixo, está indicado: 1 quadrado. Abaixo, está indicada a sentença matemática: 3 elevado a zero igual a 1. Esquema: 3 quadradinhos verdes dispostos na horizontal. Abaixo, está indicado: 3 quadrados. Abaixo, está indicada a sentença matemática: 3 elevado a um igual a 3. Esquema: 9 quadradinhos verdes dispostos 3 linhas com 3 quadradinhos cada. Abaixo, está indicado: 9 quadrados. Abaixo, está indicada a sentença matemática: 3 ao quadrado igual a 3 vezes 3 igual a 9. Esquema: 27 quadradinhos verdes dispostos 9 linhas com 3 quadradinhos cada. Abaixo, está indicado: 27 quadrados. Abaixo, está indicada a sentença matemática: 3 ao cubo igual a 3 vezes 3 vezes 3 igual a 27.

Qualquer potência de base real e expoente inteiro maior que 1 é produto dessa base por ela mesma tantas vezes quantas indica o expoente. Assim, sendo a um número real e n um número inteiro maior que 1, temos:

Esquema.
a elevado a n igual, a vezes a vezes a vezes reticências virgula n maior que 1.
Um fio laranja sai dos fatores dessa multiplicação e indica n fatores.

Qualquer potência de base real e expoente 1 é igual à própria base. Assim, sendo a um número real, temos:

a elevado a 1 = a

Qualquer potência de base real não nula e expoente zero é igual a 1. Assim, sendo a um número real, temos:

a elevado a 0 = 1, a 0

Confira estes exemplos.

a) 2elevado a 3 = 2 2 2 = 8

b) (menos7)elevado a 2 = (menos7) (menos7) = 49

c)

Sentença matemática. Abre parênteses, menos 1 sobre 5, fecha parênteses, elevado a 4, igual, abre parênteses, menos 1 sobre 5, fecha parênteses, vezes, abre parênteses, menos 1 sobre 5, fecha parênteses, vezes, abre parênteses, menos 1 sobre 5, fecha parênteses, vezes, abre parênteses, menos 1 sobre 5, fecha parênteses, igual, 1 sobre 625.

d) (0,1)elevado a 3 = (0,1) (0,1) (0,1) = 0,001

e)

Sentença matemática. Abre parênteses, menos 5 sobre 8, fecha parênteses, elevado a 1, igual, menos 5 sobre 8.

f) (0,666...)elevado a 1 = 0,666...

g) (0,232323...)elevado a 0 = 1

h)

Sentença matemática. Abre parênteses, 3 sobre 4, fecha parênteses, elevado a 0, igual, 1.

Considere, agora, esta sequência.

Esquema. Quadro com 7 colunas e 1 linha. Números que aparecem em cada coluna da esquerda para a direita: 125, 25, 5, 1, 1 quinto, um 25 avos. um 125 avos. Da primeira para a segunda coluna seta para a direita dividido por 5. Da segunda para a terceira coluna seta para a direita dividido por 5. Da terceira para quarta coluna seta para a direita dividido por 5 e assim sucessivamente até da sexta para a sétima coluna.

Podemos escrever esses números na fórma de potências de base 5. Como cada termo é o termo anterior dividido por 5, os expoentes das potências de base 5 diminuirão uma unidade a cada termo.

Esquema. Quadro com 7 colunas e 2 linhas. Na primeira linha, os números que aparecem em cada coluna da esquerda para a direita: 125, 25, 5, 1, 1 quinto, um 25 avos. um 125 avos. Na segunda linha, as sentenças matemáticas que aparecem em cada coluna da esquerda para a direita: 5 elevado a 3, 5 elevado a 2, 5 elevado a 1, 5 elevado a zero, 5 elevado a menos 1, 5 elevado a -2, 5 elevado a -3. Abaixo da segunda linha, da primeira para a segunda coluna seta para a direita dividido por 5. Da segunda para a terceira coluna seta para a direita dividido por 5. Da terceira para quarta coluna seta para a direita dividido por 5 e assim sucessivamente até da sexta para a sétima coluna.

Analise as potências com expoentes negativos que obtivemos no quadro anterior.

 

Sentença matemática. 5 elevado a menos 1, igual, 1 dividido por 5, igual, 1 vezes 1 sobre 5, igual, 1 sobre 5.

 

Sentença matemática. 5 elevado a menos 2, igual, 1 sobre 5, fim da fração, dividido por 5, igual, 1 sobre 5,fim da fração, vezes, 1 sobre 5, igual, abre parênteses, 1 sobre 5, fecha parênteses, elevado a 2.

 

Sentença matemática. 5 elevado a menos 3, igual, abre parênteses, 1 sobre 5, fecha parênteses, elevado a 2, dividido por 5, igual, 1 sobre 5, fim da fração, vezes, 1 sobre 5, fim da fração, vezes, 1 sobre 5, igual, abre parênteses, 1 sobre 5, fecha parênteses, elevado a 3.

Qualquer potência de base real não nula e expoente inteiro negativo é igual à potência do inverso da base dada e expoente igual ao oposto do expoente dado. Assim, sendo a um número real não nulo e menosn um expoente inteiro negativo, temos:

Sentença matemática. a elevado a menos n, igual, 1 sobre a elevado a n, igual, abre parênteses, 1 sobre a, fecha parênteses, elevado a n, a diferente de zero.

Verifique mais alguns exemplos.

a)

Sentença matemática. 2 elevado a menos 2, igual, 1 sobre 2 elevado a 2, igual, 1 sobre 4.

b)

Sentença matemática. Abre parênteses, menos 3, fecha parênteses, elevado a menos 4, igual, 1 sobre, abre parênteses, menos 3, fecha parênteses, elevado a 4, igual, 1 sobre 81.

c)

Sentença matemática. Abre parênteses, 2 sobre 3, fecha parênteses, elevado a menos 2, igual, 1 sobre, abre parênteses, 2 sobre 3, fecha parênteses, elevado a 2, igual, 1 sobre 4 nonos, igual, 9 sobre 4.

Notação científica

Considere as potências de 10 a seguir.

Esquema. 10 ao quadrado igual a 100. Uma chave para baixo indica 2 zeros do 100.Esquema. 10 elevado a 3 igual a mil. Uma chave para baixo indica 3 zeros do mil. Esquema. 10 elevado a 4 igual a 10 mil. Uma chave para baixo indica 4 zeros do 10 mil. Esquema. 10 elevado a 5 igual a 100 mil. Uma chave para baixo indica 5 zeros do 100 mil.

Note que cada potência de 10, com expoente natural, é igual a um número representado por 1 seguido de zeros. Assim:

Esquema. 10 elevado a n igual a 1 zero zero zero zero zero reticências zero. Uma chave para baixo indica os n zeros.

As potências de 10 são utilizadas para expressar números excessivamente grandes ou extremamente pequenos, como nos exemplos a seguir.

As imagens foram aplicadas sem respeitar a proporção real entre suas medidas.

Fotografia. Fundo escuro com planeta Terra.
A medida da massa da Terra é de aproximadamente 5,972 10elevado a 24 quilogramas.
Fotografia. Fundo escuro com esferas alaranjadas e interior vermelho. À esquerda, manchas na cor verde.
Partículas do vírus sárs cóv dois, causador da côvid dezenóve, em microfotografia em cores realçadas produzida por microscópio eletrônico. Foto ampliada em 191.200 vezes. Segundo estudos, o comprimento do diâmetro desse vírus mede entre 5 10elevado a menos 8 métros e 2 10elevado a menos 7 métros.

Os números 5,972 10elevado a 24, 5 10elevado a menos 8 e 2 10elevado a menos 7 estão representados em notação científica. Nesse tipo de representação, o número que multiplica a potência de base dez deve estar entre o número 1 e o 10.

Um número escrito em notação científica apresenta o formato a 10elevado a bê, em que b é um expoente inteiro e a pertence ao intervalo 1 < a < 10.

Confira mais alguns exemplos.

a) ...3000000000 = 3 ...1000000000 = 3 10elevado a 9 (a = 3 e b = 9)

b) .....476000000000000000 = 4,76 .....100000000000000000 = 4,76 10elevado a 17 (a = 4,76 e b = 17)

c) 0,00000008 = 8 0,00000001 = 8 10elevado a menos 8 (a = 8 e b = 8)

d) 0,0000032 = 3,2 10elevado a menos 6 (a = 3,2 e b = 6)

Atividades

Faça as atividades no caderno.

1. Calcule as potências a seguir.

a) 2elevado a 4

b)

Sentença matemática. Abre parênteses, 1 meio, fecha parênteses, elevado a menos 3.

c) 2elevado a menos 3

d)

Sentença matemática. Abre parênteses, 1 quinto, fecha parênteses, elevado a 3.

e) abre parêntesesmenos4fecha parênteseselevado a 3

f) 10elevado a 3

g) abre parênteses0,1fecha parênteseselevado a menos 2

h)

Sentença matemática. Abre parênteses, menos 3 sétimos, fecha parênteses, elevado a menos 2.

i) 10elevado a menos 3

j)

Sentença matemática. Abre parênteses, 2 terços, fecha parênteses, elevado a 2.

k) 0 elevado a 10

l) abre parênteses0,181818...)elevado a 2

2. Calcule o valor de:

a) 3x elevado a 3 menos 2x elevado a 2 menos x + 5, para x = menos1

b) abre parêntesesmenos1fecha parênteseselevado a 8 menos 3 abre parêntesesmenos1fecha parênteseselevado a 5 + abre parêntesesmenos1fecha parênteseselevado a 16

c) 2elevado a 6 menos 2elevado a 5 + 2elevado a 4 menos 2elevado a 3 + 2elevado a 2 menos 2elevado a 1 + 2elevado a 0

3. Os resultados de menos 9 entre parênteses elevado a 2 e menos9elevado a 2 são iguais? Justifique sua resposta.

4. Escreva os números a seguir em notação científica.

a) .5400

b) 0,0025

c) ..300000000

d) 0,00000637

5. Qual expressão tem maior valor: a ou B ?

ei =

Sentença matemática. A, igual, abre parênteses, 1 sobre 1, fecha parênteses, elevado a menos 2, fim do expoente, mais abre parênteses, 1 sobre 2, fecha parênteses, elevado a 2, fim do expoente, mais abre parênteses, 1 sobre 3, fecha parênteses, elevado a menos 2, fim do expoente, mais abre parênteses, 1 sobre 4, fecha parênteses, elevado a 2, fim do expoente, mais abre parênteses, 1 sobre 5, fecha parênteses, elevado a menos 2.

B =

Sentença matemática. B, igual, abre parênteses, 1 sobre 1, fecha parênteses, elevado a 2, fim do expoente, mais abre parênteses, 1 sobre 2, fecha parênteses, elevado a menos 2, fim do expoente, mais abre parênteses, 1 sobre 3, fecha parênteses, elevado a 2, fim do expoente, mais abre parênteses, 1 sobre 4, fecha parênteses, elevado a menos 2, fim do expoente, mais abre parênteses, 1 sobre 5, fecha parênteses, elevado a 2.

6. A partir do repouso, um corpo em queda livre percorre, no vácuo, uma medida de distância d (em metro) que corresponde a

Sentença matemática. d igual a fração de numerador g vezes t ao quadrado e denominador 2.

, em que g é a medida da aceleração da gravidade (considere g = 10 metros por segundo ao quadrado).

Fotografia. Um homem em queda livre no ar com os braços para frente e pernas para cima.  Eles está com capacete, óculos e a uma espécie de mochila nas costas em que fica o paraquedas dobrado. Abaixo, está o solo. mostrando como o homem está bem alto.

Desprezando a resistência do ar, que medida de distância percorre um paraquedista em queda livre durante os 12 primeiros segundos?

7. Copie o quadro no caderno e complete com as medidas expressas em notação científica.

Medidas das distâncias médias de alguns planetas até o Sol

Planeta

Medida da distância média ao Sol (km)

Medida expressa em notação científica (km)

Saturno

1.429.400.000

Vênus

108.200.000

Urano

2.870.990.000

Mercúrio

57.910.000

Dados obtidos em: https://oeds.link/rWdxPJ. Acesso em: 4 julho 2022.

Propriedades da potenciação para potências de base real e expoente inteiro

Todas as propriedades da potenciação são válidas para as potências de base real e expoente inteiro, desde que as condições para a existência das potências sejam obedecidas.

Produto de potências de mesma base

Em uma multiplicação de potências de mesma base, conservamos a base e adicionamos os expoentes.

Esquema. Início da potência, 2 elevado a 2, fim da potência, vezes, início da potência, 2 elevado a 3, fim da potência, igual, abre parênteses, 2 vezes 2, fecha parênteses, vezes, abre parênteses, 2 vezes 2 vezes 2, fecha parênteses, igual a 2 vezes 2 vezes 2 vezes 2 vezes 2 igual a 2 elevado a 5 igual a 2 elevado ao expoente 2 mais 3. Uma chave para baixo a partir do 2 vezes 2, indicando 2 elevado a 2. Uma chave para baixo a partir do 2 vezes 2 vezes 2, indicando 2 elevado a 3.

Considere mais alguns exemplos.

a) (0,15)elevado a 2 (0,15)elevado a 3 = (0,15)elevado a 2 mais 3 = (0,15)elevado a 5

b) (0,777reticências)elevado a menos 1 (0,777reticências)elevado a 5 = (0,777reticências)elevado a menos 1 mais 5 = (0,777reticências)elevado a 4

De modo geral: a elevado a m a elevado a n = a elevado a m mais n, em que ei é um número real não nulo e m e n são números inteiros.

Quociente de potências de mesma base

Em uma divisão de potências de mesma base não nula, conservamos a base e subtraímos os ­expoentes.

Sentença matemática. Fração de numerador 3 elevado a 5 e denominador 3 elevado a 3. Essa fração é igual a fração de numerador 3 vezes 3 vezes 3 vezes 3 vezes 3 e denominador 3 vezes 3 vezes 3 que é igual a 3 vezes 3 que é igual a 3 ao quadrado que é igual a 3 elevado ao expoente 5 menos 3.

Analise mais alguns exemplos.

a) (0,19)elevado a 6 : (0,19)elevado a 2 = (0,19) elevado a 6 menos 2 = (0,19)elevado a 4

b)

Sentença matemática. Fração de numerador 5 elevado a 7 e denominador 5 elevado a menos 3. Essa fração é igual a 5 elevado ao expoente 7 menos abre parênteses menos 3 fecha parênteses, igual a 5 elevado a 10.

De modo geral: a elevado a m : a elevado a n = a elevado a m menos n, em que ei é um número real não nulo e m e n são números inteiros.

Potência de uma potência

Uma potência elevada a um expoente pode ser escrita mantendo-se a base e multiplicando-se os expoentes.

abre parênteses4elevado a 2fecha parênteseselevado a 4 = 4elevado a 2 4elevado a 2 4elevado a 2 4elevado a 2 = 4elevado a 2 mais 2 mais 2 mais 2 = 4elevado a 8 = 4elevado a duas vezes 4

Verifique mais alguns exemplos.

a) abre colcheteabre parênteses0,32fecha parênteseselevado a 3fecha colcheteelevado a 2 = abre parênteses0,32fecha parênteseselevado a 3 vezes 2 = abre parênteses0,32fecha parênteseselevado a 6

b)

Sentença matemática. Abre colchetes, abre parênteses, menos 1 sobre 5, fecha parênteses, elevado a 3, fecha colchetes, elevado a 5, igual, abre parênteses, menos 1 sobre 5, fecha parênteses, elevado a 3 vezes 5, igual, abre parênteses, menos 1 sobre 5, fecha parênteses, elevado a 15.

De modo geral: (a elevado a m)elevado a n = aelevado a m vezes n, em que a é um número real não nulo e m e n são números inteiros.

Potência de um produto

Em uma multiplicação de dois ou mais fatores elevados a um mesmo expoen­te, podemos elevar cada um desses fatores a esse mesmo expoente.

(2 5)elevado a 3 = (2 5) (2 5) (2 5) = 2 2 2 5 5 5 = 2elevado a 3 5elevado a 3

Verifique mais alguns exemplos.

a) (2 5)elevado a 3 = 2elevado a 3 5elevado a 3

b)

Sentença matemática. Início da potência, abre parênteses, 3 sobre 5, fim da fração, vezes, 1 sobre 2, fecha parênteses, elevado a menos 2, fim da potência, igual, início da potência, abre parênteses, 3 sobre 5, fecha parênteses, elevado a menos 2, fim da potência, vezes, início da potência, abre parênteses, 1 sobre 2, fecha parênteses, elevado a menos 2, fim da potência.

De modo geral: (a b)m = am  bm, em que a ê b são números reais não nulos e m é um nú­mero inteiro.

Potência de um quociente

Em uma divisão elevada a um expoente, podemos elevar o dividendo e o divisor a esse mesmo expoente.

 

Sentença matemática. Início da potência, abre parênteses, 7 dividido por 6, fecha parênteses, elevado a 2, fim da potência, igual, início da potência, abre parênteses, 7 sobre 6, fecha parênteses, elevado a 2,, fim da potência, igual a abre parênteses 7 sobre 6, fecha parênteses, vezes. abre parênteses 7 sobre 6, fecha parênteses igual a fração de numerador 7 ao quadrado e denominador 6 ao quadrado.

Verifique mais alguns exemplos.

a) (8 : 3)elevado a 2 = 8elevado a 2 : 3elevado a 2

b)

Sentença matemática. Início da potência, abre parênteses, 4 sobre 3, fim da fração, vezes, 3 sobre 16, fecha parênteses, elevado a menos 3, fim da potência, igual, início da potência, abre parênteses, 4 sobre 3, fecha parênteses, elevado a menos 3, fim da potência, dividido por, início da potência, abre parênteses, 3 sobre 16, fecha parênteses, elevado a menos 3, fim da potência.

De modo geral: (a : b)m = am : bm, em que a ê b são números reais não nulos e m é um número inteiro.

Observação

Confira atentamente estas desigualdades.

2elevado a 3 + 2 2elevado a 3 elevado a 4, pois: 24 128

2elevado a 3 menos 2 2elevado a 3 , pois:

Sentença matemática. menos 8 diferente de meio.

Sentença matemática. Abre parênteses, 5 elevado a 2 terços, fecha parênteses, elevado a 3, igual a, 5 elevado ao expoente 2 terços vezes 3, igual a 5 ao quadrado.

, pois: 5elevado a 6 5elevado a 8

(5 + 3)elevado a 2 5elevado a 2 + 3elevado a 2, pois: 64 34

(5 menos 3)elevado a 2 5elevado a 2 menos 3elevado a 2, pois: 4 16

Atividades

Faça as atividades no caderno.

8. Indique sob a fórma de uma só potência.

a) 2elevado a 3 2elevado a 4 25 26

b) (2elevado a 3)elevado a 2

c) (6 : 3)elevado a 3

d) 10elevado a 3 10 10

e) (3elevado a 4)elevado a menos 3

f) 6elevado a 4 : 6elevado a 2

g) (2 3)elevado a 3

h) 7 elevado a 15 : 7 elevado a 10

i) 10elevado a menos 1 10elevado a 2 10elevado a menos 1

9. Calcule o valor de cada potência usando as propriedades da potenciação.

a)

fração de numerador 2 a quarta vezes 2 a décima potência vezes 2 ao cubo e denominador 2 a quinta potência vezes 2 a sexta potência

b) (7 4)2

c)

Sentença matemática. Abre parênteses, 1 sobre 4, fecha parênteses, elavado a terceira.

d)

Sentença matemática. Abre colchetes, abre parênteses, menos 1 sobre 2, fecha parênteses, elevado a 3, fecha colchetes, elevado a 2.

10. Determine o valor da expressão numérica:

 

Sentença matemática. Início da potência, abre parênteses, 1 vírgula seis seis seis reticências, fecha parênteses, elevado a menos 1, fim da potência, mais, fração de numerador abre parênteses, início da potência, 3 elevado a 10, fim da potência, vezes, início da potência, 3 elevado a menos 5, fim da potência, fecha parênteses, elevado a 3 e denominador 9 elevado a 8.

11. Calcule o valor das expressões numéricas.

a) 3elevado a 2 4elevado a 1 menos 2elevado a 0 + 3elevado a 1 3elevado a 2 3elevado a 3

b) (menos2)elevado a menos 6 8elevado a 2 + 30

c) 6elevado a 1 3elevado a menos 2 + 4elevado a menos 1 menos 4 7 elevado a 0

d) 8elevado a 4 8elevado a 3 8elevado a 4 : 8elevado a 8

12. Em seu caderno, avalie cada sentença como verdadeira ou falsa.

a) (2 5)elevado a 3 = 2elevado a 3 5elevado a 3

b) (2 + 5)elevado a 3 = 2elevado a 3 + 5elevado a 3

c) (17 1)elevado a 2 = 17elevado a 2 menos 1elevado a 2

2 Radiciação

No movimento de queda livre de um objeto a partir do repouso apresentado no início do tópico Potenciação, indicamos que esse objeto percorre, durante uma medida de tempo (t ), em segundo, uma medida de distância (d ), em metro, que corresponde aproximadamente a:

Sentença matemática. d igual a fração de numerador g vezes t ao quadrado e denominador 2.

, em que g é a medida da aceleração da gravidade a que um objeto está submetido, correspondendo a 10 metros por segundo ao quadrado para um objeto próximo à superfície terrestre.

Se soltássemos uma esfera metálica de uma altura medindo, por exemplo, 320 métros (a mesma medida da altura da Torre Eiffel), desprezando a resistência do ar, após 2 segundos, a esfera teria percorrido aproximadamente 20 métros.

Esquema. Representação de uma torre treliça  de base larga e topo estreito,  Na base há um arco e na parte central uma abertura com formato similar a de um trapézio. 
Do lado esquerdo da representação da torre há uma cota vertical, indicando que a  torre tem 320 metros de altura. Também está representado um esfera em queda livre.

Agora, vamos determinar a medida aproximada do tempo que essa esfera demoraria para chegar ao solo.

Sentença matemática. d igual a fração de numerador g vezes t ao quadrado e denominador 2.
Sentença matemática. 320 igual a fração de numerador 10 vezes t ao quadrado e denominador 2.

10 t2 = 640

Sentença matemática. t ao quadrado igual a 640 sobre 10.

t 2 = 64

Sabemos que t representa a medida do tempo da queda e, por isso, t > 0. Para obter o número positivo que elevado ao quadrado resulta em 64, fazemos:

Sentença matemática. Raiz quadrada de 64 igual a 8.

Logo:

Sentença matemática. t igual a raiz quadrada de 64.

t = 8

Portanto, a esfera metálica levaria aproximadamente 8 segundos para chegar ao solo.

Nesses cálculos realizados para encontrar a medida aproximada do tempo de queda da esfera metálica, utilizamos as operações de multiplicação, divisão e radiciação.

Nesse exemplo, vimos que

Sentença matemática. Raiz quadrada de 64 igual a 8.

, pois 8elevado a 2 = 64.

Além da raiz quadrada

símbolo de raiz quadrada sem o índice 2. símbolo de raiz quadrada com o índice 2

, temos também as raízes cúbicas

símbolo de raiz cúbica

, quartas

símbolo de raiz quarta

, quintas

símbolo de raiz quinta

, entre outras. Os números 2, 3, 4 e 5 nesses símbolos são chamados índices.

Raiz quadrada

A raiz quadrada de um número real positivo x é um número não negativo que, elevado ao quadrado, resulta em x.

Confira alguns exemplos.

a)

Sentença matemática. Raiz quadrada de 36 igual a 6.

, pois: 62 = 36   b)

Sentença matemática. Raiz quadrada de 16 igual a 4.

, pois: (0,4)elevado a 2 = 0,16   c)

Sentença matemática. Raiz quadrada de 49 sobre 81 igual a 7 nonos.

, pois:

Sentença matemática. Abre parênteses, 7 nonos, fecha parênteses, elevado a 2 igual a 49 sobre 81.

Observação

Há dois números que, elevados ao quadrado, resultam em 64:

8elevado a 2 = 64 e (8)elevado a 2 = 64

Porém, pela definição, a raiz quadrada é um número não negativo. Logo,

Sentença matemática. Raiz quadrada de 64 igual a 8.

.

Raiz quadrada exata

Considere as operações:

1 1 = 1elevado a 2 = 1

2 2 = 2elevado a 2 = 4

3 3 = 3elevado a 2 = 9

4 4 = 4elevado a 2 = 16

5 5 = 5elevado a 2 = 25

6 6 = 6elevado a 2 = 36

7 7 = 7elevado a 2 = 49

8 8 = 8elevado a 2 = 64

9 9 = 9elevado a 2 = 81

10 10 = 10elevado a 2 = 100

11 11 = 11elevado a 2 = 121

12 12 = 12elevado a 2 = 144

Os números 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121 e 144 são exemplos de quadrados perfeitos, pois podem ser escritos como uma potência de base racional e expoente 2.

Se x for um número racional e for quadrado perfeito,

Sentença matemática. Raiz quadrada de x.

será um número racional. Em casos assim, podemos obter a raiz quadrada exata desses números.

Assim:

Sentença matemática. Raiz quadrada de 1 igual a 1.

Sentença matemática. Raiz quadrada de 4 igual a 2.

Sentença matemática. Raiz quadrada de 9 igual a 3.

Sentença matemática. Raiz quadrada de 0 vírgula 16 igual a 0 vírgula 4.

Sentença matemática. Raiz quadrada de 25 igual a 5.

Sentença matemática. Raiz quadrada de 36 igual a 6.

Sentença matemática. Raiz quadrada de 49 igual a 7.

Sentença matemática. Raiz quadrada de 64 igual a 8.

Sentença matemática. Raiz quadrada de 81 igual a 9.

Sentença matemática. Raiz quadrada de 100 igual a 10.

Sentença matemática. Raiz quadrada de 121 igual a 11.

Sentença matemática. Raiz quadrada de 144 igual a 12.

Para determinar a raiz quadrada de números quadrados perfeitos, podemos ­utilizar a ­decomposição em fatores primos.

Analise os exemplos.

a) Vamos determinar a raiz quadrada de .1296.

Inicialmente, decompomos .1296 em fatores primos.

Esquema. Decomposição na vertical do número mil 296. Entre os números da esquerda e da direita há um traço vertical. À esquerda o número mil 296 e à direita, o número 2. Abaixo, à esquerda o 648, à direita o 2. Abaixo, à esquerda o 324 e à direita o 2. Abaixo, à esquerda o 162 e à direita o 2. Abaixo, à esquerda o 81 e à direita o 3. Abaixo, à esquerda o 27 e à direita o 3. Abaixo, à esquerda o 9 e à direita o 3. Abaixo, à esquerda o 3 e à direita outro 3. Abaixo apenas à esquerda o 1.

.1296 = 24 34

.1296 = (22 32)2 = 362

Portanto,

Sentença matemática. Raiz quadrada de mil 296 igual a 36.

, pois 362 = .1296.

b) Vamos determinar a raiz quadrada de 10,89.

Inicialmente, transformamos o número decimal 10,89 na fração decimal

Fração. Mil e 89 centésimos.

.

Em seguida, decompomos em fatores primos o numerador e o denominador. Confira:

 

Sentença matemática. mil e 89 centésimos é igual a fração de numerador 3 ao quadrado vezes 11 ao quadrado e denominador 2 ao quadrado vezes 5 ao quadrado. Essa fração é igual a fração de numerador abre parênteses 3 vezes 11, fecha parênteses, elevado a 2 e denominador, abre parênteses, 2 vezes 5, fecha parênteses, elevado a 2. Essa fração é igual a 33 ao quadrado sobre 10 ao quadrado que é igual a, abre parênteses, 33 sobre 10, fecha parênteses, elevado 2, que é igual a 3 virgula 3 ao quadrado.

Portanto,

Sentença matemática. Raiz quadrada de 10 vírgula 89 é igual a raiz quadrada de 33 sobre 10 ao quadrado que é igual a 33 décimos que é igual a 3 vírgula 3.

, pois (3,3)2 = 10,89.

Observação

Se x for um número não negativo e não for quadrado perfeito,

Sentença matemática. Raiz quadrada de x.

será um número com infinitas casas decimais não periódicas, ou seja, será um número irracional.

Verifique os exemplos.

a) 3 não é um quadrado perfeito e

Sentença matemática. Raiz quadrada de 3.

é um número irracional.

b)

Fração, 1 sobre 11.

não é um quadrado perfeito e

Sentença matemática. Raiz quadrada de 1 sobre 11.

é um número irracional.

Raiz quadrada aproximada

Podemos calcular a raiz quadrada de qualquer número real não negativo, mas, se ela for um número irracional, não será exata. Nesse caso, podemos obter um valor aproximado, ou seja, uma raiz quadrada aproximada.

Acompanhe a situação.

Jonas comprou um terreno quadrado que tem medida de área igual a 500 métros quadrados. Qual é a medida de comprimento do lado desse terreno?

Figura geométrica. Quadrado verde. A medida do comprimento do lado do quadrado está indicada pela letra a. Dentro dele está escrito 500 metros quadrados,

Considerando a como a medida de comprimento do lado do quadrado que representa o terreno, temos:

 

a a= 500a2 = 500

Sentença matemática. a igual a raiz quadrada de 500.

Portanto, a medida de comprimento do lado do terreno é

Sentença matemática. Raiz quadrada de 500.

metros. Mas qual é o valor de

Sentença matemática. Raiz quadrada de 500.

?

Com o auxílio de uma calculadora, poderíamos facilmente determinar o valor aproximado de

Sentença matemática. Raiz quadrada de 500.

. Porém, como nem sempre podemos contar com uma calculadora, vamos aprender a estimar esse valor por meio do uso de quadrados perfeitos.

Note que o número 500 situa-se entre os quadrados perfeitos 484 e 529.

Como

Sentença matemática. Raiz quadrada de 484 igual a 22.

e

Sentença matemática. Raiz quadrada de 529 igual a 23.

,

Sentença matemática. Raiz quadrada de 500.

é um número que está entre 22 e 23.

Calculamos os quadrados de alguns números situados entre 22 e 23, com uma casa decimal. Confira:

Sentenças matemáticas. Cálculo de quadrados de alguns números situados entre 22 e 23 com uma casa decimal. 22 vírgula 1  ao quadrado, igual, 488 vírgula 41. 22 vírgula 2 ao quadrado, igual, 492 vírgula  84. 22 vírgula 3  ao quadrado, igual, 497 vírgula  27. Abre parênteses, menor que 500, fecha parênteses. 22 vírgula 4  ao quadrado, igual, 500 vírgula  76. Abre parênteses, maior que 500, fecha parênteses. Todas essa sentença está em um caixa com borda laranja.

Assim, 22,4 corresponde a uma aproximação de

Sentença matemática. Raiz quadrada de 500.

com uma casa decimal.

Para uma maior aproximação, podemos calcular os quadrados de números de duas casas ­decimais situados entre 22,3 e 22,4. Verifique:

Ilustração. Menino de cabelo preto, camiseta vermelha e calça azul. Ele está sentado segurando um livro aberto e fala: O número 499,9696 está mais próximo de 500 que o 500,4169. Ao lado dele, um cachorro sentado. Sentenças matemáticas. Cálculo de quadrados de alguns números situados entre 22 virgula 3  e 22 vírgula 4 com duas casas decimais. 22 vírgula 31 ao quadrado, igual, 497 vírgula 7361. 22 vírgula 32 ao quadrado, igual, 498 vírgula  1824. 22 vírgula 33 ao quadrado, igual, 498 vírgula  6289. 22 vírgula 34 ao quadrado, igual, 499 vírgula  0764. 22 vírgula 35 ao quadrado, igual, 499 vírgula  5225. 22 vírgula 36 ao quadrado, igual, 499 vírgula  9696. 99 vírgula  9696 está em destaque. Abre parênteses, menor que 500, fecha parênteses. 22 vírgula 37 ao quadrado, igual, 500 vírgula  4169. Abre parênteses, maior que 500, fecha parênteses. Todas essa sentença está em uma caixa com borda laranja.

Assim, 22,36 corresponde a uma aproximação de

Sentença matemática. Raiz quadrada de 500.

com duas casas decimais.

Logo, o comprimento do lado desse terreno mede aproximadamente 22,36 metros.

Atividades

Faça as atividades no caderno.

13. Determine o valor das raízes quadradas.

a)

raiz quadrada de 81

b)

raiz quadrada de 0

c)

raiz quadrada da fração 4 sobre 25

d)

raiz quadrada de 144

e)

raiz quadrada de 1

f)

raiz quadrada da fração 64 sobre 169

g)

raiz quadrada da fração 1 sobre 16

h)

raiz quadrada de 225

i)

raiz quadrada de 0,49

14. Determine a raiz quadrada dos números com aproximação de uma casa decimal.

a) 40

b) 65

c) 85

d) 93

e) 122

f) 140

g) 800

h) 940

i) .1010

j) .1050

15. Sabendo que os números a seguir são quadrados perfeitos, determine a raiz quadrada de cada um deles.

a) .1225

b) .2401

c) .3136

d) .6561

e) .6400

f) .7744

16. Determine a raiz quadrada dos números a seguir.

a) 1,44

b) 12,96

c) 30,25

d) 72,25

e) 39,69

f) 94,09

17.

Utilizando uma calculadora, determine a raiz quadrada destes números, com aproximação de duas casas decimais.

a) 30

b) 8,6

c) 77

d) 110

e) 95

f) 50,8

g) 150

h) 86,25

i) 94

j) 125

18. Determine o valor das adições, com aproximação de uma casa decimal.

a)

raiz quadrada de 2 mais raiz quadrada de 3

b)

raiz quadrada de 5 mais raiz quadrada de 7

c)

raiz quadrada de 3 mais raiz quadrada de 5

d)

raiz quadrada de 7 mais raiz quadrada de 11

19. Determine o menor número inteiro não nulo pelo qual devemos multiplicar 360 para obter como resultado um quadrado perfeito.

20.

Faça os cálculos mentalmente, começando pela raiz quadrada de 1.

 

 

Abre raiz quadrada de 43 mais abre raiz quadrada de 31 mais abre raiz quadrada de 21 mais abre raiz quadrada de 13 mais abre raiz quadrada de 7 mais abre raiz quadrada de 3 mais abre raiz quadrada de 1

21. Determine o valor de x, com uma casa decimal, que satisfaça

Sentença matemática. Raiz quadrada de 36 menor que x menor que raiz quadrada de 38.

.

22. Coloque em ordem crescente os números

Sentença matemática. Raiz quadrada de 8.

,

Sentença matemática. Raiz quadrada de 4.

,

4 sobre 5

e

7 sobre 2

.

23. A raiz quadrada de um número natural compreendido entre 200 e 250 é um número inteiro. Que número é esse?

24. Um quadrado tem medida de área igual a 60 centímetros quadrados. Qual é a medida de comprimento do lado desse quadrado, com aproximação de duas casas decimais?

Raiz enésima

O processo usado para obter o valor de outras raízes é similar ao utilizado para obter o valor das raízes quadradas.

A raiz enésima de um número real a, que tem como índice um número natural n 2, é assim representada:

Esquema. raiz enésina de a, sai um fio laranja de n indicando índice e um fio laranja de a indicando radicando.

O cálculo da raiz enésima pode ser analisado considerando-se dois casos: o índice n par e o índice n ímpar.

A raiz enésima de índice par de um número real a (a 0) é o número real b (b 0) tal que belevado a n = a. Assim, temos:

 

Sentença matemática. Raiz enésima de a igual a b.

se, e somente se, belevado a n = a e b 0

Analise os exemplos.

a)

Sentença matemática. Raiz quarta de 0 vírgula 0081 igual a 0 vírgula 3.

, pois 0,3elevado a 2 = 0,0081 e 0,3 > 0.

b)

Sentença matemática. Raiz sexta de 64 igual a 2.

, pois 2elevado a 6 = 64 e 2 > 0.

Observação

Se a for um número real negativo, a raiz enésima de a, com n par, não será um número real. Dessa forma,

Sentença matemática. Raiz quadrada de menos 0,25, fim da raiz.

e

Sentença matemática. Raiz de índice 6 de menos 1, fim da raiz.

não são números reais. Isso ocorre porque não existe um número real que, elevado a um expoente par, resulte em um número negativo.

A raiz enésima de índice ímpar de um número real a é o número real b tal que belevado a n = a. Assim, temos:

 

Sentença matemática. Raiz enésima de a igual a b.

se, e somente se, belevado a n = a

Analise os exemplos.

a)

Sentença matemática. Raiz cúbica de menos 125 igual a menos 5.

, pois: (5)elevado a 3 = 125

b)

Sentença matemática. Raiz quinta de mil e 24 igual a 4.

, pois: (4)elevado a 5 = .1024

Atividades

Faça as atividades no caderno.

25. A raiz cúbica de um número natural compreendido entre 200 e 400 é um número ímpar. Que número é esse?

26. A medida V de volume de um cubo é 200 decímetros cúbicos. Qual é a medida a de comprimento da aresta desse cubo com aproximação de uma casa decimal sabendo que V = aelevado a 3?

27. Determine as raízes dos números a seguir.

a)

raiz cúbica de 64

b)

raiz cúbica de menos 27

c)

raiz sexta de 64

d)

raiz cúbica de 0,343

e)

raiz quinta de 243

f)

raiz quarta da fração 16 sobre 625

Veja que interessante

Faça as atividades no caderno.

Potência com expoente fracionário

Estudamos potências de base real e expoente inteiro, mas o expoente de uma potência também pode ser um número na fórma de fração. Por exemplo:

a)

Sentença matemática. 3 elevado a meio.

b)

Sentença matemática. 5 elevado a 2 terços.

c)

Sentença matemática. 0 vírgula 25 elevado a 3 quintos.

d)

Sentença matemática. Um virgula 3 elevado a 1 sétimo.

As propriedades de potências com expoentes inteiros continuam válidas quando o expoente é um número racional e a base é um número real positivo.

Assim, aplicando a propriedade da potência de uma potência e a definição de raiz enésima, temos:

a)

Sentença matemática. Abre parênteses, 3 elevado a meio, fecha parênteses, elevado a 2, igual a, 3 elevado ao expoente meio vezes 2, igual a 3 elevado a 1.

Como

Sentença matemática. Abre parênteses, 3 elevado a meio, fecha parênteses, elevado a 2, igual a, 3 elevado ao expoente meio vezes 2, igual a 3 elevado a 1.

e

Sentença matemática. 3 elevado a meio maior que zero.

, então:

Sentença matemática. Raiz quadrada de 3 elevado a 1 igual a 3 elevado a meio.

b)

Sentença matemática. Abre parênteses, 5 elevado a 2 terços, fecha parênteses, elevado a 3, igual a, 5 elevado ao expoente 2 terços vezes 3, igual a 5 ao quadrado.

Como

Sentença matemática. Abre parênteses, 5 elevado a 2 terços, fecha parênteses, elevado a 3, igual a, 5 elevado ao expoente 2 terços vezes 3, igual a 5 ao quadrado.

, então:

Sentença matemática. Raiz cúbica de 5 ao quadrado igual a 5 elevado a 2 terços.

c)

Sentença matemática. Abre parênteses, 0 vírgula 25 elevado a 3 quintos. fecha parênteses, elevado a 5, igual a, 0 vírgula 25 elevado ao expoente 3 quintos vezes 5, igual a 0 vírgula 25 ao cubo.

Como

Sentença matemática. Abre parênteses, 0 vírgula 25 elevado a 3 quintos. fecha parênteses, elevado a 5, igual a, 0 vírgula 25 ao cubo.

, então:

Sentença matemática. Abre parênteses, 0 vírgula 25 elevado a 3 quintos. fecha parênteses, elevado a 5, igual a, 0 vírgula 25 elevado ao expoente 3 quintos vezes 5, igual a 0 vírgula 25 ao cubo, igual a 0 vírgula elevado a 3 quintos.

d)

Sentença matemática. Abre parênteses, 1 vírgula 3 elevado a 1 sétimo. fecha parênteses, elevado a 7, igual a, 1 vírgula 3 elevado ao expoente 1 sétimos vezes 7, igual a mais 1 vírgula 3.

Como

Sentença matemática. Abre parênteses, 1 vírgula 3 elevado a 1 sétimo. fecha parênteses, elevado a 7, igual a, 1 vírgula 3 elevado a 1.

, então:

Sentença matemática. Raiz sétima de 1 vírgula 3 elevado a 1 igual a 1 vírgula 3 elevado a 1 sétimo.

Da mesma maneira, podemos escrever outras potências de expoente fracionário como raiz.

De modo geral, para todo número real positivo a, número inteiro m e número natural n e n 2, temos:

 

Sentença matemática. a elevado a m sobre n igual a raiz enésima de a elevado a m.

Atividades

a) Calcule

Sentença matemática. Início da potência, 0 vírgula 16 elevado a meio, fim da potência, menos, início da potência, 0 vírgula 027 elevado a um terço, fim da potência.

b)

Ícone de atividade em dupla.

Escreva uma raiz em uma folha avulsa. Em seguida, troque de folha com um colega e escreva a raiz indicada por ele como potência de expoente fracionário. Confira se a representação do seu colega está correta.

c)

Ícone de atividade em dupla.

Junte-se a um colega e escreva três raízes quadradas exatas. Em seguida, peça a ele que calcule os valores dessas três raízes, escrevendo-as como potências de expoente fracionário e utilizando a decomposição em fatores primos e as propriedades de potenciação. Por fim, verifique se as representações e os cálculos que seu colega fez estão corretos.

Revisão dos conteúdos deste capítulo

Faça as atividades no caderno.

Potenciação

Qualquer potência de base real e expoente inteiro maior que 1 é produto dessa base por ela mesma tantas vezes quantas indica o expoente. Assim, sendo a um número real e n um número inteiro maior que 1, temos:

Esquema. a elevado a n igual, a vezes a vezes a vezes reticências virgula n maior que 1. Um fio laranja sai dos fatores dessa multiplicação e indica n fatores.

Qualquer potência de base real e expoente 1 é igual à própria base. Assim, sendo a um número real, temos:

aelevado a 1 = a

Qualquer potência de base real não nula e expoente zero é igual a 1. Assim, sendo a um número real, temos:

aelevado a 0 = 1, a 0

Qualquer potência de base real não nula e expoente inteiro negativo é igual à potência do inverso da base dada e expoente igual ao oposto do expoente dado. Assim, sendo a um número real não nulo e n um expoente inteiro negativo, temos:

 

Sentença matemática. a elevado a menos n, igual, 1 sobre a elevado a n, igual, abre parênteses, 1 sobre a, fecha parênteses, elevado a n, a diferente de zero.

Notação científica

Um número escrito em notação científica apresenta o formato a 10elevado a bê, em que b é um expoente inteiro e a é um número racional que pertence ao intervalo 1 < a < 10.

1. Calcule as potências a seguir.

a) 3elevado a 3

b) 2elevado a 2

c) (2)elevado a 2

d)

Sentença matemática. Abre parênteses, 2 terços, fecha parênteses, elevado a 2.

e)

Sentença matemática. Abre parênteses, menos 4 quintos, fecha parênteses, elevado a menos 2.

f) 5elevado a 0

g) (1)elevado a 3

h) 2elevado a 1

2. Calcule o valor das expressões.

a) 3xelevado a 2 xelevado a menos 1 + 2, para x = 1

b)

Sentença matemática. Abre parênteses, menos 1, fecha parênteses, elevado a 2, fim do expoente, menos 3 vezes, abre parênteses, menos meio, fecha parênteses, elevado a menos 2.

c)

Sentença matemática. 2 elevado a zero, fim do expoente, mais, 4 elevado ao quadrado vezes 3, dividido, abre parênteses, meio, fecha parênteses.

3. Escreva os números a seguir em notação científica.

a) 0,27

b) 895

c) .3600

d) 0,0012

e) ..50000000

f) 0,000000044

Propriedades da potenciação para potências de base real e expoente inteiro

Produto de potências de mesma base

a elevado a m a elevado a n = a elevado a m mais n, em que a é um número real não nulo e m e n são números inteiros.

Quociente de potências de mesma base

a elevado a m : a elevado a n = a elevado a m menos n, em que a é um número real não nulo e m e n são números inteiros.

Potência de uma potência

abre parêntesesa elevado a mfecha parênteseselevado a n = a elevado a m vezes n, em que a é um número real não nulo e m e n são números inteiros.

Potência de um produto

abre parêntesesa bfecha parênteseselevado a m = a elevado a m b elevado a m, em que a ê b são números reais não nulos e m é um nú­mero inteiro.

Potência de um quociente

abre parêntesesa dividido por bfecha parênteseselevado a m = a elevado a m dividido por b elevado a m, em que a ê b são números reais não nulos e m é um número inteiro.

4. Indique cada item como uma só potência.

a) 3elevado a 2 3elevado a 4 3elevado a 3 3elevado a 9

b) abre parênteses5elevado a 2fecha parênteseselevado a 3

c) abre parênteses2elevado a 3fecha parênteseselevado a menos 2

d) 8elevado a 3 : 8elevado a 5

e) 2elevado a 1 4elevado a 1 4elevado a 2 4elevado a 0

5. Calcule o valor das expressões numéricas.

a) 4elevado a 4 : 4elevado a 3 + 3 3elevado a 2

b) abre parênteses2elevado a 3fecha parênteseselevado a 2 abre parênteses2elevado a 3fecha parênteseselevado a 2

c) abre parênteses1fecha parênteseselevado a 3 + 3elevado a 4 : 3elevado a 4

d) 3elevado a 0 + 5elevado a 3 : 5elevado a 2

e) abre parênteses2elevado a 4fecha parênteseselevado a 2 : 4elevado a 1 + 3elevado a 0 3elevado a 2


Radiciação

Raiz quadrada

A raiz quadrada de um número real positivo x é um número não negativo que, elevado ao quadrado, resulta em x.

Raiz quadrada exata

Os números 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121 e 144 são exemplos de quadrados perfeitos, pois podem ser escritos como uma potência de base racional e expoente 2.

Se x for um número racional e for quadrado perfeito,

Sentença matemática. Raiz quadrada de x.

será um número racional. Em casos assim, podemos obter a raiz quadrada exata desses números.

Raiz quadrada aproximada

Se x for um número não negativo e não for quadrado perfeito,

Sentença matemática. Raiz quadrada de x.

será um número com infinitas casas decimais não periódicas, ou seja, será um número irracional.

Nos casos em que a raiz é um número irracional, podemos obter um valor aproximado, ou seja, uma raiz quadrada aproximada.

6. Determine os valores das raízes quadradas.

a)

Sentença matemática. Raiz quadrada de 49

b)

Sentença matemática. Raiz quadrada de 25.

c)

Sentença matemática. Raiz quadrada de 169.

d)

Sentença matemática. Raiz quadrada de 225.

e)

Sentença matemática. Raiz quadrada de 4 nonos.

f)

Sentença matemática. Raiz quadrada de 16 sobre 49.

g)

Sentença matemática. Raiz quadrada de 121 centésimos.

h)

Sentença matemática. Raiz quadrada de 4 sobre 169.

i)

Sentença matemática. Raiz quadrada de 25 sobre 225.

7.

Utilizando uma calculadora, determine a raiz quadrada dos números, com aproximação de duas casas decimais.

a)

Sentença matemática. Raiz quadrada de 27.

b)

Sentença matemática. Raiz quadrada de 300.

c)

Sentença matemática. Raiz quadrada de 6.

d)

Sentença matemática. Raiz quadrada de 2 vírgula 5.

8. Calcule as raízes a seguir com aproximação de uma casa decimal.

a)

Sentença matemática. Raiz quadrada de 75.

b)

Sentença matemática. Raiz quadrada de 7

c)

Sentença matemática. Raiz quadrada de 3 vírgula 57.

d)

Sentença matemática. Raiz quadrada de 500.

9. Calcule o valor das expressões.

a)

Sentença matemática. Raiz quadrada de 13 ao quadrado menos 12 ao quadrado.

b)

Sentença matemática. Raiz quadrada de 1 virgula 21, fim da raiz, mais, raiz quadrada de 1 vírgula 44, fim da raiz, mais, raiz quadrada de zero vírgula 49, fim da raiz, mais, raiz quadrada de zero vírgula 16, fim da raiz, mais, raiz quadrada de zero vírgula 36.

c)

Sentença matemática. Raiz quadrada de 16, fim da raiz, mais, raiz quadrada de 1 nono, fim da raiz, mais, raiz quadrada de 1 quarto, fim da raiz, mais, 7 elevado a 1, fim do potência, menos, 12 elevado a zero.

10. Responda às questões.

a) Qual é o maior número inteiro quadrado perfeito de quatro algarismos?

b) Qual é a raiz quadrada do número .11236?

c) A terça parte da raiz quadrada de um número x é igual a 12. Qual é o valor de x ?

Raiz enésima

A raiz enésima de um número real a, que tem como índice um número natural n 2, é assim representada:

Esquema. raiz enésina de a, sai um fio laranja de n indicando índice e um fio laranja de a indicando radicando.

O cálculo da raiz enésima pode ser analisado considerando-se dois casos: o índice n par e o índice n ímpar.

A raiz enésima de índice par de um número real a (a 0) é o número real b (b  0) tal que belevado a n = a. Assim, temos:

 

Sentença matemática. Raiz enésima de a igual a b.

se, e somente se, belevado a n = a e b 0

A raiz enésima de índice ímpar de um número real a é o número real b tal que belevado a n = a. Assim, temos:

 

Sentença matemática. Raiz enésima de a igual a b.

se, e somente se, belevado a n = a.

11. Determine as raízes dos números a seguir.

a)

Sentença matemática. Raiz cúbica de menos 729.

b)

Sentença matemática. Raiz quinta de 32.

c)

Sentença matemática. Raiz quarta de 81.

d)

Sentença matemática. Raiz sexta de 729 sobre 4 mil e 96.

12. Simplifique a expressão a seguir.

 

Sentença matemática. Numerador da fração: Raiz quadrada de raiz quadrada de 16, fim da raiz, mais, 5 vezes, raiz cúbica de mil, fim da raiz, mais 10 elevado a 1. Denominador da fração: Raiz cúbica de menos 343.

Glossário

GB
: símbolo utilizado para representar a unidade de medida de armazenamento gigabyte; 1 gigabyte (GB) é aproximadamente igual a ...1000000000 bytes ou 109
Voltar para o texto
vácuo
: na prática, utilizamos esse termo para nos referir a um ­espaço no qual a maior parte do ar ou de outro gás foi retirada e no qual a pressão é extremamente pequena.
Voltar para o texto