CAPÍTULO 3 Estatística e probabilidade

Fotografia. Vista frontal de prédio composto por vidros espelhados refletindo a imagem de um morro com casas de tijolos e abaixo, uma ponte. No centro, as imagens nos espelhos estão um pouco distorcidas.
Vidros espelhados de um conjunto comercial refletindo uma comunidade no Rio de Janeiro (Rio de Janeiro). (Fotografia de 2017.)

Um mundo mais desigual é o legado imediato da pandemia [de Covid-19]. [reticências] No topo da pirâmide, um reduzido e seleto clube de multimilionários — 0,001% da população — viu suas fortunas crescerem 14%. Em uma amplíssima base, 100 milhões de pessoas a mais caíram na pobreza extrema. [reticências]

[reticências] [No Brasil,] os 10% mais ricos concentram 59% da renda nacional total, enquanto a metade [menos privilegiada] da população leva apenas cêrca de 10%. [reticências]

Fonte: PELLICER, L.; GRASSO, D. Os 10% mais ricos com 76% do patrimônio do planeta, o retrato da desigualdade na pandemia. El País, Madri, 7 dezembro 2021.

Na fotografia, grande parte de uma comunidade aparece refletida em um só edifício, ilustrando a desigualdade na distribuição de renda e riqueza no Brasil.

Observe, leia e responda no caderno.

a) Esta fotografia revela a desigualdade descrita nos dados estatísticos?

b) A população mundial era, no início de 2022, cêrca de 7,8 bilhões. Quantas pessoas correspondem a 0,001% dessa população?

c) A população brasileira era, no início de 2022, cêrca de 210 milhões. Quantas pessoas correspondem a 50% dessa população? E a 10%?

1. Origem da Estatística

A Estatística é o ramo da Matemática que possibilita coletar, descrever, organizar, analisar e comunicar dados a respeito de uma população ou de um fenômeno.

Os primeiros “dados estatísticos” apareceram há muito tempo, à medida que ocorria o desenvolvimento da escrita. Registros históricos (informações que encontramos em vestígios de civilizações anteriores à nossa) de mais de .2000 anos antes de Cristo apontam o uso de processos que hoje chamaríamos de estatísticos.

Grandes impérios da Antiguidade (como o sumério, o egípcio e o chinês) e da América pré-colombiana (maia, asteca e inca) fizeram uso do levantamento e do registro de dados quantitativos para obter informações sobre sua população e suas riquezas, especialmente para fins administrativos, tributários (relativos ao pagamento de impostos) e militares.

Fotografia. Um quipo. Objeto com haste na horizontal e nele amarradas várias cordas enfileiradas. As cordas estão com alguns nós.
O povo inca, que dominou a cordilheira dos Andes entre o século doze e meados do dezesseis, não conhecia a escrita, mas armazenava informações estatísticas em sofisticados artefatosde cordas chamados quipos. Neles, a uma corda principal eram amarradas várias cordasenfileiradas, cujos nós representavam quantidades relativas a bens materiais e humanos.

Talvez em virtude dessa aplicação, o termo estatística derive da palavra latina status, que significa “condição, situação”, ou, em sentido mais amplo, “Estado”.

O uso do termo para denominar esse campo de estudo é atribuído a Gottfried Achenwall (1719 a 1772), professor na Universidade de Göttingen, na Alemanha.

Na atualidade, a Estatística é essencial para o desen­volvimento de todas as ciên­cias e está presente no cotidiano por meio de índices, tabelas e gráficos.

Neste capítulo, estudaremos alguns conceitos que esclarecem as mais diversas informações estatísticas, como: popula­ção e amostra, maneiras de obtenção e organização de dados em tabelas e gráficos e medidas de tendência central.

2. Coleta, organização e apresentação de dados

Coleta e organização

Uma bióloga fez uma pesquisa sobre a medida do comprimento da cauda dos leões adultos que vivem em determinada região. Durante o estudo, com sua equipe e em segurança, ela verificou o comprimento da cauda de 30 leões e, em seguida, anotou em um quadro as medidas aferidas.

Ilustração. Mulher de cabelo castanho, casaco verde e calça azul. Ela está na frente de uma lousa anotando algumas informações. Ao lado da mulher, há uma mesa com duas cadeiras de um lado e uma cadeira do outro lado.

Em Estatística, o conjunto de todos os elementos que contêm uma característica a ser estudada é chamado de população estatística. Na pesquisa realizada pela bióloga, a população estatística corresponde a todos os leões que vivem na região escolhida.

Quando uma pesquisa considera todos os elementos da população, ela é denominada censo. Porém nem sempre é possível pesquisar todos os elementos de uma população estatística, pois, em geral, a população a ser pesquisada é muito grande. Quando isso acontece, limitamos a pesquisa a uma parte da população, que chamamos de amostra.

No caso da pesquisa realizada pela bióloga, a amostra corresponde aos 30 leões que tiveram o comprimento de sua cauda medido. Ao escolher uma amostra, é necessário que ela represente a população. Isso significa que a amostra deve apresentar todas as características da população que representa e, também, deve ser imparcial, isto é, ela deve integrar, proporcionalmente, todos os elementos da população. Existem várias técnicas para escolher uma amostra de modo a garantir que ela represente, da melhor maneira possível, a população da qual foi retirada. Esse assunto será estudado em anos posteriores.

A coleta de dados pode ser feita por meio de observação, contagem, medida, questionário ou entrevista.

A medida do comprimento da cauda dos leões é a variável da pesquisa, ou seja, a característica que se quer estudar. Uma variável pode ser quantitativa (quando assume valor numérico associado a contagem ou medida) ou qualitativa (quando o valor da variável é expresso por um atributo). São exemplos de variáveis quantitativas: massa, idade, altura, entre outros. Já a côr dos olhos, a procedência, o tipo de pelo, entre outros, são exemplos de variáveis qualitativas.

Como já sabemos, após obter a medida do comprimento da cauda de cada leão, a bióloga anotou os dados em um quadro.

Ilustração. Mulher de cabelo castanho, casaco verde e calça azul. À sua direita há um cartaz com dois leões. Ela escreve na lousa: Medida do comprimento da cauda de cada leão (em centímetro): 82, 90, 91, 85, 95, 98, 99, 96, 90, 85 82, 91, 82, 91, 85, 99, 82, 96, 96, 98 85, 90, 85, 90, 98, 91, 95, 90

Os dados assim apresentados são denominados dados brutos. Essa apresentação não favorece a observação de regularidade ou tendência nos dados. Para isso, é conveniente organizá-los em ordem crescente ou decrescente, denominada rol. Com o rol de dados, podemos facilmente obter a amplitude da amostra, que é a diferença entre o maior e o menor valor. Também podemos verificar a frequência absoluta de cada medida, que corresponde à quantidade de vezes que cada valor aparece na amostra. Com os dados organizados dessa maneira, fica mais fácil apresentá-los em uma tabela de distribuição de frequências.

Ilustração. Mulher de cabelo castanho, casaco verde e calça azul. Ela fala: Tanto nos dados brutos quanto no rol temos um exemplo de sequência numérica não recursiva. À direita da mulher há um cartaz com dois leões e a sua esquerda há uma lousa com as informações: Medida do comprimento da cauda de cada leão (em centímetro): 82, 90, 91, 85, 95, 98, 99, 96, 90, 85 82, 91, 82, 91, 85, 99, 82, 96, 96, 98 85, 90, 85, 90, 98, 91, 95, 90. Um traço. Abaixo dele: Rol: 82, 82, 82, 82, 85, 85, 85, 85, 85, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 95, 95, 95, 96, 96, 96, 98, 98, 98, 99, 99
Distribuição da medida do comprimento da cauda dos leões

Medida da cauda (em centímetro)

82

85

90

91

95

96

98

99

Frequência absoluta

4

5

6

4

3

3

3

2

Dados obtidos pela bióloga.

Observando a tabela com os dados da distribuição da medida do comprimento da cauda dos leões, podemos chegar a diversas conclusões. Por exemplo:

há 4 leões cujo comprimento da cauda mede 82 centímetros, ou seja, a medida 82 centímetros tem fre­quência 4;

há 8 leões cujo comprimento da cauda mede 96 centímetros ou mais, pois as medidas 96 centímetros, 98 centímetros e 99 centímetros têm frequências 3, 3 e 2, respectivamente. E 3 + 3 + 2 = 8;

há 15 leões cujo comprimento da cauda mede menos de 91 centímetros, pois 4 têm 82 centímetros de comprimento de cauda, 5 têm 85 centímetros e 6 têm 90 centímetros;

a amplitude da amostra é 17 (99 82).

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

1 No caderno, classifique as variáveis a seguir em quantitativa ou qualitativa.

a) Salário.

b) Gênero.

c) Número de irmãos.

d) Opinião sobre a qualidade da água.

e) Número do sapato.

f) Escolaridade.

2 Dê dois exemplos de variável quantitativa e dois exemplos de variável qualitativa.

3 Em uma pesquisa referente à qualidade da coleta de lixo de determinado município que tem 10 bairros, o instituto responsável escolheu uma amostra formada por moradores de um mesmo bairro. Analisando a situação apresentada, pode-se afirmar que as conclusões obtidas por essa pesquisa são significativas para todo o município? ­Justifique.

4 Em um clube, a idade (em ano) dos participantes de um jôgo de vôlei era:

Esquema: números dispostos em duas linhas. Primeira linha: 18 17 20 18 16 19. Segunda linha: 16 20 17 18 17 19.

Com essas informações, elabore uma tabela de distribuição de frequência.

5 Gustavo fez uma pesquisa com alguns amigos para saber quantos animais de estimação cada um deles tinha em casa.

Fotografia. Garoto branco, de cabelo loiro e blusa azul listrada. Ele está deitado na grama sorrindo; e sobre suas costas, um cachorro de pelos brancos e orelha alaranjada, está com o focinho próximo a seu rosto.
Garoto brincando com um cachorro.

Observe os números que ele obteve:

Esquema: números dispostos em 4 linhas. Primeira linha: 2 3 0 4 2 Segunda linha: 1 2 1 3 0 Terceira linha: 0 2 3 2 4 Quarta linha: 1 6 2 1 3

Construa uma tabela de distribuição de frequência com esses dados.

6 Dos 120 estudantes do curso de Medicina, Cláudio registrou o número de batimentos cardíacos por minuto de 50 colegas de classe. Observe os números que ele registrou:

Esquema: números dispostos em 5 linhas. Primeira linha: 75 85 76 85 77 88 78 77 79 77 Segunda linha: 80 92 85 90 88 78 90 85 92 79 Terceira linha: 92 90 75 76 76 78 78 76 78 77 Quarta linha: 90 92 76 90 78 76 76 85 90 80 Quinta linha: 92 90 75 80 76 78 77 76 85 88

Com essas informações, construa uma tabela de distribuição de frequências e responda:

a) Quantos estudantes tem a população pesquisada? E quantos tem a amostra?

b) Qual é a amplitude dessa amostra?

c) Quantos estudantes apresentaram número de batimentos por minuto superior a 79?

d) Qual valor de batimentos por minuto aparece com maior frequência?

7

Ícone de Atividade em dupla ou em grupo.

 Hora de criar – Escolha uma variável quantitativa (idade, massa, altura, número de pessoas em casa etcétera) que possa ser pesquisada entre os colegas de classe. Faça a pesquisa, organize os dados em uma tabela de distribuição de frequências e, depois, apresente o resultado à turma.

Pense mais um poucoreticências

FAÇA A ATIVIDADE NO CADERNO

Analise a tabela de distribuição de frequências que se refere às notas obtidas por todos os competidores em uma etapa classificatória para um torneio de saltos ornamentais.

Distribuição das notas obtidas pelos competidores

Nota

4,0

5,0

7,5

8,0

9,0

Frequência

4

10

12

8

6

Dados obtidos pela organização do torneio.

a) Quantos atletas participaram da etapa classificatória?

b) Determine a porcentagem de atletas correspondente a cada nota e a soma das porcentagens.

c) Reproduza essa tabela acrescentando uma terceira linha para indicar as porcentagens.

d) Supondo que a nota para aprovação nessa competição seja 5,0, qual é a porcentagem de atletas reprovados nessa etapa?

Apresentação de resultados

Já aprendemos a interpretar e a organizar dados em tabelas e gráficos estatísticos. Essas representações são utilizadas tanto com o objetivo de organizar os dados obtidos em uma pesquisa a fim de observar padrões de comportamento das variáveis como para comunicar os resultados encontrados.

Vamos relembrar algumas dessas representações gráficas.

Gráfico de colunas

Gráfico em barras verticais (ou gráfico de colunas). Título: Porcentagem de municípios brasileiros com destinação correta de resíduos em 2018. No eixo horizontal estão indicados os locais. No eixo vertical estão indicadas as porcentagens de municípios brasileiros. Os dados são: Brasil: 50%; Norte: 14%; Nordeste: 15%; Centro-Oeste: 20%; Sudeste: 59%; Sul: 86%.
Dados obtidos em: GANDRA, A. Quase metade dos municípios brasileiros pesquisados ainda despeja resíduos em lixões. Agência Brasil, Rio de Janeiro, 5 agosto 2020. Disponível em: https://oeds.link/gFA3L1. Acesso em: 23 maio 2022.

O gráfico de colunas é formado por retângulos de mesma medida de largura, com a base em um eixo ­horizontal e alturas correspondentes a valores em um eixo vertical.

Gráfico de barras

Gráfico em barras horizontais (ou gráfico de barras). Título: Parques nacionais mais visitados no Brasil em 2019 (em milhão). No eixo horizontal estão indicadas as quantidade de visitantes. No eixo vertical estão indicados os parques nacionais. Os dados são: Tijuca (Rio de janeiro): 2,95;  Iguaçu (Paraná): 2,02;  Jericoacoara (Ceará): 1,32; Serra da Bocaina (São Paulo): 0,7. Fernando de Noronha (Pernambuco): 0,61.
Dados obtidos em: MENEGASSI, D. Visitação nos parques cresce pelo 12º ano seguido e bate 15 milhões em 2019. O eco, 18 junho 2020. Disponível em: https://oeds.link/7cYmm5. Acesso em: 23 maio 2022.

O gráfico de barras é parecido com o gráfico de colunas, só que a base dos retângulos que formam as barras fica apoiada no eixo vertical, e os valores ficam no eixo horizontal.

Tanto o gráfico de colunas quanto o de barras são muito utilizados, por causa da facilidade nas construções e da clareza na apresentação dos dados.

Gráfico de setores

Gráfico de setores. Um gráfico em formato de círculo, dividido em fatias (setores circulares) e cores distintas. Título: Área das regiões brasileiras (em porcentagem) O título está com um asterisco e o asterisco indica que os valores são aproximados. Os dados são: Norte: 45,2%; Centro-Oeste: 18,9%; Nordeste: 18,2%; Sudeste: 10,9%; Sul: 6,8%.
*Valores aproximados. Dados obtidos em: ÁREAS territoriais. IBGE. Disponível em: https://oeds.link/LtGcEi. Acesso em: 21 junho 2022.

No gráfico de setores, a frequência de cada dado estatístico é representada por um setor (uma “fatia”) do círculo, cuja medida da área é proporcional à frequência. Ele é usado quando se deseja relacionar os dados estatísticos entre si ou com o todo. Nesse tipo de gráfico, a soma das porcentagens correspondentes às fatias deve ser 100%.

Gráfico de linha

Gráfico em linha. Um gráfico composto por uma linha, formada por diversos segmentos de reta. Título: Níveis percentuais dos reservatórios de hidrelétricas das regiões Sudeste e Centro-Oeste. No eixo horizontal estão indicados os anos. No eixo vertical estão indicadas porcentagens do total. Os dados são: 2011: 87,8; 2012: 72,4; 2013: 62,8; 2014: 37,3; 2015: 36,1; 2016: 56,8; 2017: 43,3; 2018: 42,6; 2019: 47,1; 2020: 55,1; 2021: 32,1.
Dados obtidos em: AMATO, F. Nível dos reservatórios de Sudeste e Centro-Oeste em maio é o mais baixo para o mês desde 2001. G1/Economia, 2 junho 2021. Disponível em: https://oeds.link/Eyxqgq. Acesso em: 21 junho 2022.

O gráfico de linha é usado principalmente para estudar um fenômeno no decorrer do tempo. Ele tem dois eixos: o horizontal, no qual, nesse exemplo, foram anotados os intervalos de tempo; e o vertical, em que foram marcadas frequências em determinada escala. Unindo os pontos obtidos no cruzamento das paralelas aos eixos pelos valores das variáveis, determinamos a linha do gráfico.

Gráficos de múltiplas entradas

Gráfico em barras verticais e linhas. Título: Matrículas em creches por rede de ensino no Brasil, de 2017 a 2021. No eixo horizontal estão indicados anos. No eixo vertical estão indicados os números de matrículas. Há uma linha vermelha para a rede de ensino privada, uma linha verde para a rede de ensino pública e barras verticais em amarelo para indicar o total de matrículas em cada ano. Os dados são: Ano 2017. Privada: 1.180.623. Pública: 2.226.173. Total: 3.406.796. Ano 2018. Privada: 1.235.260. Pública: 2.352.032. Total: 3.587.292. Ano 2019. Privada: 1.298.509. Pública: 2.456.583. Total: 3.755.092. Ano 2020. Privada: 1.208.686. Pública: 2.443.303. Total: 3.651.989. Ano 2021. Privada: 1.017.444. Pública: 2.399.766. Total: 3.417.210.
Dados obtidos em: BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inépi). Resumo Técnico: Censo Escolar da Educação Básica 2021. Brasília, Distrito Federal: Inépi, 2021. Disponível em: https://oeds.link/PcRTRu. Acesso em: 23 maio 2022.
Gráfico em linhas. Título: Evolução do número de escolas por etapa de ensino oferecida no Brasil, de 2017 a 2021. No eixo horizontal estão indicados os anos. No eixo vertical estão indicados os números de escolas. Há uma linha azul para Creche, uma linha em vermelho para Pré-escola, uma linha verde para anos iniciais do Ensino Fundamental, uma linha laranja para anos finais do Ensino Fundamental e uma linha roxa para Ensino Médio. Os dados são: Ano 2017. Creche: 67.902. Pré-escola: 105.200. Anos iniciais do Ensino Fundamental: 115.372. Anos finais do Ensino Fundamental: 62.394. Ensino Médio: 28.558. Ano 2018. Creche: 69.745. Pré-escola: 103.260. Anos iniciais do Ensino Fundamental: 112.146. Anos finais do Ensino Fundamental: 62.009. Ensino Médio: 28.673. Ano 2019. Creche: 71.403. Pré-escola: 102.235. Anos iniciais do Ensino Fundamental: 109.644. Anos finais do Ensino Fundamental: 61.765. Ensino Médio: 28.860. Ano 2020. Creche: 70.894. Pré-escola: 101.012. Anos iniciais do Ensino Fundamental: 108.080. Anos finais do Ensino Fundamental: 61.608. Ensino Médio: 28.593. Ano 2021. Creche: 69.865. Pré-escola: 99.895. Anos iniciais do Ensino Fundamental: 106.761. Anos finais do Ensino Fundamental: 61.791. Ensino Médio: 29.167.
Dados obtidos em: BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inépi). Resumo Técnico: Censo Escolar da Educação Básica 2021. Brasília, Distrito Federal: Inépi, 2021. Disponível em: https://oeds.link/PcRTRu. Acesso em: 23 maio 2022.

Um gráfico de múltiplas entradas pode ser de linha, de colunas, de barras, entre outros. Nele, representa-se uma mesma característica estudada para duas ou mais amostras, facilitando a comparação entre elas.

Pictograma

Gráfico em pictograma. Título: Medidas de comprimento de algumas espécies de baleias encontradas no Brasil. Os dados estão representados com desenhos de baleias, em que o dado numérico é proporcional ao tamanho da baleia. Os dados são: Baleia-minke (ilustração de uma baleia bem pequena): 10 metros. Baleia-de-bryde (ilustração de uma pequena baleia): 16 metros. Baleia-franca (ilustração de uma baleia maior): 18 metros. Cachalote (ilustração de uma baleia de tamanho igual à anterior): 18 metros. Baleia-fin. Ilustração de uma baleia grande. 25 metros.
Dados obtidos em: MIRANDA, A.; et al. Guia ilustrado de identificação de cetáceos e sirênios do Brasil: Instituto Chico Mendes de Conservação da Biodiversidade/cê ême á. nota de rodapé 2. edição Brasília, Distrito Federal: I cê ême bio/cê ême á, 2020. Disponível em: https://oeds.link/2wsbpa. Acesso em: 21 junho 2022.
Gráfico em pictograma. Título: HQs mais vendidas de todos os tempos (em milhões). Cada desenho de HQ equivale a 1 milhão. Os dados são: Super-heróis V13 (1991). Ilustração de 8 HQs e uma parte de outra HQ. 8,18. Esquadrão 24V15 (1991). Ilustração de 5 HQs. 5. Um pedaço V61 (2011). Ilustração de 3 HQs e um parte de outra HQ: 3,38. Super-heróis V1 (1987). Ilustração de 3 HQs: 3 Esquadrão 24 V1 (1990). Ilustração de 2 HQs e uma pela metade: 2,5.
Dados obtidos por uma loja de agá quês.

O pictograma é um gráfico formado por desenhos relacionados ao tema. Em alguns casos, as frequências/medidas da variável são representadas pela mesma figura em tamanhos proporcionais a essas frequências/medidas; às vezes, escolhe-se um ícone para representar determinada frequência/variável. Esse tipo de gráfico é muito usado em revistas e jornais.

Cartograma

O cartograma é um mapa em que se representa, por meio de pontos, linhas e figuras, a ocorrência ou a intensidade de um fenômeno, como as condições do tempo.

É muito comum o uso de cartograma em revistas e jornais impressos, televisionados ou virtuais, para informar a previsão do tempo.

Os cartogramas também são usados para ilustrar e simplificar a comunicação de dados em reportagens e em estudos sobre determinadas variáveis características de um lugar.

Temperatura, em grauscélsius, e condições do tempo nas capitais em 22 de fevereiro de 2022

Cartograma. Título: Temperatura, em grau Celsius, e condições do tempo nas capitais em 22 de fevereiro de 2022. 
O mapa mostra o mapa do Brasil com destaque para as condições do tempo na capital de cada estado. A legenda indica as condições do tempo através de ilustrações. Céu claro: ilustração de um sol. Parcialmente nublado: ilustração de nuvem branca com um sol atrás dela. Chuva: ilustração de nuvem branca com gotas em baixo dela. Chuvoso: ilustração de nuvem cinza escura com gotas em baixo dela. Chuva com trovoada: ilustração de nuvem cinza escura com gotas e raios abaixo da nuvem. Nublado: ilustração de nuvem cinza claro. Pancadas de chuva: ilustração de nuvem cinza claro com chuva e atrás dela, o Sol.
Os dados são: 
Rio Branco (Acre): 23 graus/32 graus. Chuva com trovoada.
Porto Velho (Rondônia). 23 graus/31 graus. Chuva com trovoada.
Manaus (Amazônia): 24 graus/31 graus. Chuva.
Boa Vista (Roraima): 25 graus/36 graus. Chuva com trovoada.
Macapá (Amapá): 24 graus/32 graus. Chuva com trovoada.
Belém (Pará): 25 graus/34 graus. chuva com trovoada.
São Luís (Maranhão): 25 graus/31 graus. Chuva com trovoada. 
Teresina (Piauí): 22 graus/34 graus. Chuva com trovoada. 
Fortaleza (Ceará): 25 graus/32 graus. Chuva com trovoada. 
Natal (Rio Grande do Norte): 24 graus/31 graus. Chuva com trovoada. 
João Pessoa (Paraíba): 24 graus/32 graus. Chuva com trovoada. 
Recife (Pernambuco): 25 graus/32 graus. Chuva com trovoada. 
Maceió (Alagoas): 23 graus/33 graus. Chuva. 
Aracaju (Sergipe): 25 graus/31 graus. Chuva. 
Salvador (Bahia): 23 graus/31 graus. Chuva com trovoada. 
Palmas (Tocantins): 23 graus/33 graus. Chuva com trovoada. 
Brasília (Distrito Federal): 19 graus/29 graus. Chuva com trovoada. 
Goiânia (Goiás). 20 graus/20 graus. Chuva com trovoada. 
Cuiabá (Mato Grosso): 23 graus/34 graus. Chuva com trovoada. 
Campo Grande (Mato Grosso do Sul): 21 graus/32 graus. Chuva com trovoada. 
Belo Horizonte (Minas Gerais): 19 graus/32 graus. Chuva com trovoada. 
Vitória (Espírito Santo): 22 graus/32 graus. Chuva com trovoada. 
Rio de Janeiro (Rio de Janeiro): 21 graus/35 graus. Chuva com trovoada. 
São Paulo (São Paulo). 19 graus/33 graus. Chuva com trovoada. 
Curitiba (Paraná). 19 graus/29 graus. Chuva com trovoada. 
Florianópolis (Santa Catarina). 22 graus/28 graus. Chuva com trovoada. 
Porto Alegre (Rio Grande do Sul). 20 graus/31 graus. Parcialmente nublado. 
No canto inferior direito do mapa, rosa dos ventos e escala de 0 a 500 quilômetros.
Mapa elaborado com base em: INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Atlas geográfico escolar. oitava edição Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2018. Dados obtidos em: Centro de Previsão de Tempo e Estudos Climáticos – Instituto Nacional de Pesquisas Espaciais. Disponível em: https://oeds.link/2LQGz2. Acesso em: 22 fevereiro 2022.

Infográfico

Infográfico. Imagem com informações destacadas e divididas em três colunas. Título: Atlas da Violência 2020. Primeira coluna: 57.956 homicídios em 2018. Seta para baixo: taxa de 27,8 por 100 mil habitantes. Redução de 12% em relação a 2017. Abaixo, mapa do Brasil com destaque para algumas regiões. Estados com menores taxas: Mato Grosso do Sul: 20,8. Piauí: 19,0. Distrito Federal: 17,8. Minas Gerais: 16,0. Santa Catarina: 11,9. São Paulo: 8,2. Estados com maiores taxas: Roraima: 71,8. Ceará: 54,0. Pará: 53,2. Rio Grande do Norte: 52,5. Amapá: 51,4. Sergipe: 49,7. Ao lado do mapa, pictograma de uma pessoa com ponto de interrogação e texto: 12.310 mortes sem causa definida. Abaixo, o texto: 628 pessoas assassinadas entre 2008 e 2018. Abaixo, tabela com dados do Perfil das vítimas de homicídios, separadas em homens e mulheres. Total de homicídios: Homens: 91,8%. Mulheres: 8,0%. Escolaridade (máximo de 7 anos de estudo). Homens: 74,3%. Mulheres: 66,2%. Arma de fogo. Homens: 77,1%. Mulheres: 53,7%. Risco de ser vítima, por raça/cor. Homens: 74% maior para negros. 64,4% maior para negras. Ilustração de um calendário e ao lado o texto: Sábados e domingos foram os dias com mais frequência de homicídios. Segunda coluna: Violência contra mulheres. 4.519 mulheres assassinadas em 2018. Taxa de 4,3 por 100 mil mulheres. 68% das vítimas eram negras. Pictograma de uma mulher e o texto: Uma mulher é assassinada a cada duas horas no Brasil. Ao lado, um quadro apresenta das informações: Entre 2008 e 2018. Seta para cima: homicídios de mulheres negras aumentaram 12,4%. Seta para baixo: homicídios de não negras reduziram 11,7%. Abaixo: Violência entre jovens. Ilustração da mão de uma pessoa com uma arma e ao lado o texto: 30.873 jovens vítimas de homicídio no ano de 2018. 53,3% do total de vítimas. Homicídio foi a principal causa de óbitos entre homens jovens. 55,6% das mortes de jovens entre 15 e 19 anos. 52,2% das mortes de jovens entre 20 e 24 anos. 43,7% das mortes de jovens entre 25 e 29 anos. Ao lado, ilustração do pictograma de um menino e uma menina, e as seguintes informações: O ECA reduziu a escalada da violência contra crianças e adolescentes. Crescimento médio anual. De 0 a 9 anos. Antes do ECA (1980-1991): 2,8%. Depois do ECA (1991-2018): 1,2%. 10 a 14 anos. Antes do ECA (1980-1991): 8,1%. Depois do ECA (1991-2018): 1,6%. 15 a 19 anos. Antes do ECA (1980-1991): 8,3%. Depois do ECA (1991-2018): 2,6%. 0 a 19 anos. Antes do ECA (1980-1991): 7,8%. Depois do ECA (1991-2018): 3,1%. Abaixo: Notificações de violências contra LGBTQI+ (DADOS SINAN). Violência psicológica. Em 2017: 1.693; Em 2018: 1.819; Variação, em porcentagem: 7,4%. Violência física. Em 2017: 4.596. Em 2018: 5.065. Variação, em porcentagem: 10,9%. Tortura. Em 2017: 250; Em 2018: 231; Variação, em porcentagem: menos 7,6%. Outros tipos de violência. Em 2017: 1.192; Em 2018: 2.108; Variação, em porcentagem: 76,8%. Total. Em 2017: 7.701; Em 2018: 9.223. Variação, em porcentagem: 19,8%. No canto, ilustração de pictograma de duas mulheres de mãos dadas. Terceira coluna: A importância do controle de armas. Ilustração de pictograma da mão de uma pessoa com uma arma e ao lado o texto: 71,1% dos assassinatos no Brasil foram cometidos com armas de fogo.  Abaixo, os dados: Crescimento médio anual dos homicídios por arma de fogo. Seta para cima. Antes do Estatuto do Desarmamento 1980-2003: 5,9%. Seta menor para cima. Depois do Estatuto do desarmamento 2003-2018. 0,9%. Abaixo: Desigualdade racial. Ilustração do pictograma de uma mão fechada e ao lado o texto: 75,7% das vítimas de homicídio eram negras. Homicídios entre 2008 e 2018. Negros. Seta pra cima: 11,5%. Não negros. Seta pra baixo: menos 12,9%. Abaixo: Para cada não negro vítima de homicídio, morreram: No Ceará: 4,7. Em Sergipe: 5,1. Na Paraíba: 8,9. Em Alagoas: 17. À direita dos dados, pictograma do rosto de uma pessoa negra e a informação: NEGROS. Abaixo: Para cada não negro assassinado, 2,7 negros são vítimas de homicídio.
Fonte: INFOGRÁFICO – Atlas da Violência 2020. ipéa. Disponível em: https://oeds.link/vODGQd. Acesso em: 23 maio 2022.

O infográfico é usado para apresentar informações por meio de recursos diversos, como gráficos, textos, ilustrações, fotografias, mapas etcétera. Atualmente, utilizam-se muitos infográficos em jornais, revistas e na internet.

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

8 Observe o gráfico com dados do desmatamento da Mata Atlântica em 2020 e faça o que se pede.

Gráfico de colunas. Título: Desmatamento da Mata Atlântica em 2020. No eixo horizontal estão indicados estados. No eixo vertical estão indicados hectares. Os dados são: Paraná: 2.767 hectares. Bahia: 3.532 hectares. Minas Gerais: 5.000 hectares.
Dados obtidos em: RELATÓRIO anual 2020. ésse ó ésse Mata Atlântica. Disponível em: https://oeds.link/4hlDau. Acesso em: 23 maio 2022.

a) Considere que 1 hectare corresponde a .10000 métros quadrados e que a medida da área de um campo de futebol é .10800 métros quadrados. O equivalente a quantos campos de futebol, aproximadamente, foi desmatado em cada estado citado?

b) Construa um gráfico de barras com os dados obtidos no item a.

c) Pesquise em jornais, revistas ou na internet a atual situação do desmatamento da Mata Atlântica nos estados indicados no gráfico. Construa um novo gráfico de colunas com os dados obtidos com sua pesquisa e compare-o com este.

9 Observe a tabela a seguir.

Medida da área das regiões brasileiras

Região do Brasil

Medida da área (em milhões de km2)*

Norte

3,85

Nordeste

1,55

Sudeste

0,92

Sul

0,58

Centro-Oeste

1,61

*Valores aproximados. Dados obtidos em: í bê gê É. ÁREAS territoriais. Instituto Brasileiro de Geografia e Estatística. Disponível em: https://oeds.link/2YFZIy. Acesso em: 21 junho 2022.

a) Construa um gráfico de colunas que apresente a medida da área de cada região ­brasileira.

b) Construa um gráfico de barras horizontais que apresente a quantidade de estados de cada região brasileira.

c) Qual região brasileira tem maior medida de área?

d) É correto afirmar que a região de maior medida de área tem a maior quantidade de estados?

10 Observe no cartograma a previsão meteo­rológica para a região Centro-Oeste para o dia 2 de março de 2022.

Temperatura, em grauscélsius, e condições do tempo na região Centro-Oeste em 2 de março de 2022

Cartograma. Título: Temperatura, em grau Celsius, e condições do tempo na região Centro-Oeste em 2 de março de 2022. 
O mapa destaca as seguintes capitais e seus respectivos estados brasileiros: 
Cuiabá (Mato Grosso). 23 graus/35 graus. Chuva com trovoada.
Goiânia (Goiás). 19 graus/32 graus. Chuva com trovoada.
Brasília (Distrito Federal). 16 graus/28 graus. Chuva com trovoada. 
Campo Grande (Mato Grosso do Sul). 24 graus/31 graus. Parcialmente nublado. 
No canto inferior esquerdo, rosa dos ventos e escala de 0 a 320 quilômetros.
Mapa elaborado com base em: INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Atlas geográfico escolar. oitava edição Rio de Janeiro: í bê gê É, 2018. Dados obtidos em: Centro de Previsão de Tempo e Estudos Climáticos – Instituto Nacional de Pesquisas Espaciais. Disponível em: https://oeds.link/2LQGz2. Acesso em: 2 março 2022.

a) Para qual local foi prevista a menor temperatura mínima?

b) E qual terá a menor temperatura máxima?

c) Qual foi a maior temperatura prevista?

11 Uma empresa de consultoria fez uma pes­quisa para verificar o lucro de algumas empresas brasileiras que têm ações negociadas na bolsa de valores. Os dados obtidos foram registrados no gráfico de ­colunas a seguir.

Gráfico de colunas. Título: Lucro de algumas empresas (em bilhões de reais). No eixo horizontal estão indicados os anos. No eixo vertical estão indicados os lucros. Os dados são: 2018: 11,7; 2019: 8,3; 2020: 8,5; 2021: 17,7; 2022: 15,6; 2023: 22,5.
Dados obtidos pela empresa de consultoria.

Agora, faça o que se pede.

a) Construa um gráfico de linha com as informações do gráfico de colunas apresentado.

b) Em que ano o lucro das empresas foi maior?

c) O que é possível observar em relação ao lucro dessas empresas nesse período?

12 O pictograma a seguir mostra a quantidade de funcionários em dois dos setores de uma empresa.

Gráfico de pictogramas. Título: Quantidade de funcionários. Gráfico representado por ilustrações/pictogramas de pessoas, em que cada pessoa equivale a 4 funcionários. Os dados são: Departamento de produção: 18 pictogramas; Departamento de limpeza: 3 pictogramas.
Dados obtidos pela empresa.

a) Quantos funcionários trabalham no departamento de produção dessa empresa?

b) Quantos funcionários trabalham no departamento de limpeza?

c) É possível construir um gráfico de setores para essa situação?

13 Hora de criar – Pesquise em jornais, revistas, atlas, internet e selecione dois gráficos de tipos diferentes sobre o tema que quiser. Elabore um texto que sintetize as informações apresentadas nesses gráficos.

TRABALHANDO A INFORMAÇÃO

Ícone do Tema Contemporâneo Transversal: SAÚDE

  Abordando um assunto com vários tipos de gráfico

Há tempos a dengue vem preocupando a população brasileira. Dados mostram que é necessário tomar todas as precauções para que essa doença não se dissemine ainda mais no Brasil. Observe a seguir os dados referentes a essa doença, organizados em diferentes tipos de gráfico.

Cartograma

Este cartograma mostra geograficamente o registro do número de casos por 100 mil habitantes da doença em 2021 nas regiões do Brasil.

Casos de dengue por 100 mil habitantes nas regiões brasileiras (2021)

Cartograma. Título: Casos de dengue por 100 mil habitantes nas regiões brasileiras em 2021. 
O mapa mostra o Brasil e destaca informações das regiões. Os dados são: 
Norte: 129; 
Nordeste: 76,2; 
Centro-Oeste: 362; 
Sudeste: 177,7; 
Sul: 207,6. 
No canto inferior direito, rosa dos ventos e escala de 0 a 1.030 quilômetros.
Mapa elaborado com base em: INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Atlas geográfico escolar. oitava edição Rio de Janeiro: í bê gê É, 2018. Dados obtidos em: Boletim Epidemiológico 2021. Brasília, Distrito Federal: Ministério da Saúde, Secretaria de Vigilância em Saúde, volume 52, junho 2021. Disponível em: https://oeds.link/Us0Vht. Acesso em: 21 junho 2022.

Gráfico de linhas

Um gráfico de linhas é um bom instrumento para mostrar a evolução do número de casos de dengue no Brasil.

Segundo o Ministério da Saúde, os dados do início de janeiro até 7 de dezembro de 2019 apontam ..1527119 notificações de casos prováveis.

Gráfico em linha. Título: Dengue: evolução a cada ano. Número total de casos registrados no Brasil desde 1998. No eixo horizontal estão indicados os anos. No eixo vertical estão indicadas as quantidades de casos notificados. Os dados são: 1998: entre 400 e 600 mil; 2000: entre 0 e 200 mil; 2002: entre 600 e 800 mil; 2004: entre 0 e 200 mil; 2006: entre 200 e 400 mil; 2008: entre 600 e 800 mil; 2010: entre 1 milhão e 1,2 milhão; 2012: 580.298; 2013: entre 1,4 milhão e 1,6 milhão; 2014: 580.298; 2015 (recorde): 1,68 milhão; 2016: entre 1,4 milhão e 1,6 milhão; 2018: entre 200 e 400 mil. 2019: Dados referentes até 24 de junho de 2019: 1,43 milhão. No gráfico há uma linha indicando a média histórica de casos: 580.298 casos.
*Dados referentes até 24 junho 2019. Dados obtidos em: CASOS de dengue aumentam sete vezes no Brasil em 2019. G1/Bem Estar, 11 setembro 2019. Disponível em: https://oeds.link/ycPGVn. Acesso em: 2 março 2022.

Gráfico de colunas

Em um gráfico de colunas, visualizamos a comparação da incidência da doença nos estados de Goiás, Minas Gerais e São Paulo em 2018 e 2019.

Gráfico de colunas duplas. Título: Casos de dengue em alguns estados brasileiros. No eixo horizontal estão indicados  estados brasileiros. No eixo vertical estão indicados os casos por 100 mil habitantes. Barras verticais em vermelho indicam o ano de 2018 e barras verticais em azul indicam o ano de 2019. Os dados são: Goiás. Em 2018: 73. Em 2019: 108; Minas Gerais. Em 2018: 23. Em 2019: 471; São Paulo. Em 2018: 11. Em 2019: 437.
Dados obtidos em: CASOS de dengue aumentam sete vezes no Brasil em 2019. G1/Bem Estar, 11 setembro 2019. Disponível em: https://oeds.link/ycPGVn. Acesso em: 2 março 2022.

Agora quem trabalha é você!

FAÇA AS ATIVIDADES NO CADERNO

1 A que é possível atribuir o aumento dos casos de dengue no Brasil em 2015 e 2019?

2 Considerando os anos de 2018 e 2019, quais foram os aumentos absoluto e percentual de casos de dengue no estado por 100 mil habitantes de São Paulo?

3

Ícone de Atividade em dupla ou em grupo.

No gráfico de linha, lemos a seguinte informação: “A média histórica de casos, de 1998 a 2019, é .580298”. Discuta com um colega e escrevam o que vocês entendem que essa informação significa.

3. Frequência relativa

Para a festa de formatura do 9º ano de um colégio, a diretora elaborou uma pesquisa sobre o gênero musical preferido dos estudantes de duas turmas. Na turma a, há 26 estudantes, e, na turma B, 35 estudantes. O resultado obtido na pesquisa foi organizado na tabela a seguir.

Gênero musical preferido entre os estudantes do 9º ano

Gênero

Número de estudantes: turma A

Número de estudantes: turma B

Pop

8

12

Funk

5

8

Rap

10

10

Indie

1

1

Outros

2

4

Total de estudantes

26

35

Dados obtidos pela diretora do colégio.

Ao observar os resultados da tabela, é possível afirmar que os gêneros rap e indie têm a mesma preferência nas duas turmas?

O número de vezes que um dado se repete em uma pesquisa é chamado de frequência absoluta.

Apesar de os dois gêneros musicais apresentarem a mesma frequência absoluta (número de estudantes) nas duas turmas, a preferência de cada tipo de música não é a mesma, pois as turmas não têm a mesma quantidade de estudantes.

Vamos analisar os resultados em relação ao rap e ao indie, respectivamente:

na turma a há 10 estudantes (rap) e 1 estudante (indie) em um total de 26 estudantes;

na turma B há 10 estudantes (rap) e 1 estudante (indie) em um total de 35 estudantes.

Assim, percebemos que só é possível comparar a preferência de um gênero musical entre essas turmas se observarmos a razão entre o número de estudantes que preferem esse gênero e o total de estudantes da turma. Essa razão, em estatística, é chamada de frequência relativa.

   A frequência relativa

F índice r

, geralmente apresentada na fórma de porcentagem, é dada por:

frequência relativa =

frequência absoluta sobre total de elementos

Vamos calcular a frequência relativa para cada um dos gêneros musicais. Acompanhe.

Turma a:

pop:

frequência relativa é igual a fração, 8 26 avos, fim da fração é aproximadamente igual a 0,31 que é igual a 31%.

funk:

frequência relativa é igual a fração, 5 26 avos, fim da fração, é aproximadamente igual a 0,19 que é igual a 19%.

rap:

frequência relativa é igual a fração, 10 26 avos, fim da fração, é aproximadamente igual a 0,38 que é igual a 38%.

indie:

frequência relativa é igual a fração, 1 26 avos, fim da fração, é aproximadamente igual a 0,04 que é igual a 4%.

outros:

frequência relativa é igual a fração, 2 26 avos, fim da fração, é aproximadamente igual a 0,08 que é igual a 8%.

Turma B:

pop:

frequência relativa é igual a fração, 12 35 avos, fim da fração, é aproximadamente igual a 0,34 que é igual a 34%.

funk:

frequência relativa é igual a fração, 8 35 avos, fim da fração, é aproximadamente igual a 0,23 que é igual a 23%.

rap:

frequência relativa é igual a fração, 10 35 avos, fim da fração, é aproximadamente igual a 0,29 que é igual a 29%.

indie:

frequência relativa é igual a fração, 1 35 avos, fim da fração, é aproximadamente igual a 0,03 que é igual a 3%.

outros:

frequência relativa é igual a fração, 4 35 avos, fim da fração, é aproximadamente igual a 0,11 que é igual a 11%.

Podemos, então, montar a seguinte tabela:

Gênero musical preferido entre os estudantes do 9º ano

Gênero

Frequência relativa: turma A

Frequência relativa: turma B

Pop

31%

34%

Funk

19%

23%

Rap

38%

29%

Indie

4%

3%

Outros

8%

11%

Total

100%

100%

Dados obtidos pela diretora do colégio.

Notamos que, apesar de o rap apresentar a mesma frequência absoluta, a frequência relativa para esse gênero musical não foi a mesma nas duas turmas. O mesmo vale para o gênero indie. Com isso, concluímos que a preferência desses dois gêneros não é a mesma nas duas turmas.

Considere a situação a seguir.

O departamento de contrôle de qualidade de uma empresa testou a massa (em grama) de um lote de 50 pacotes de farinha, supostamente de 1 quilograma, e construiu o rol:

940; 945; 955; 955; 963; 970; 970; 972; 974; 988; 988; 988; 989; 990; 990; 991; 993; 993; 993; 996; 997; 997; 999; 999; .1000; .1000; .1000; .1000; .1000; .1002; .1002; .1004; .1005; .1005; .1005; .1008; .1009; .1009; .1012; .1016; .1016; .1019; .1019; .1020; .1023; .1023; .1024; .1025; .1025; .1028

Para ter uma ideia melhor da distribuição de frequência, a pesquisadora reuniu esses valores em grupos de amplitude igual a 25 gramas. A esses grupos chamamos “classe”. Nesse caso, cada classe constituía um conjunto de números de a até b, incluindo a e não incluindo b. Observe a tabela de distribuição de frequência em classes.

Teste em pacotes de farinha (medida da massa em grama)

Classe (de a até b*)

Frequência absoluta

Frequência relativa

De 925 até 950

2

4%

De 950 até 975

7

14%

De 975 até 1.000

15

30%

De 1.000 até 1.025

23

46%

De 1.025 até 1.050

3

6%

Totais

50

100%

* O b não está incluído na classe. Dados obtidos pela empresa de farinha.

Analisando a tabela, em relação à marca estabelecida de 1 quilograma, podemos concluir que:

em 76% dos pacotes, o êrro é menor ou igual a 25 gramas;

48% (4% + 14% + 30%) estão abaixo e 52% (46% + 6%) estão acima.

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

14 Em uma pesquisa para saber o tempo, em hora, que os jovens gastam ouvindo música durante um dia, obtiveram-se os seguintes resultados:

Esquema: números dispostos em 5 linhas. Primeira linha: 0,5 3,0 4,5 3,0 1,0 1,0 3,0 Segunda linha: 4,5 3,0 1,0 4,0 4,0 3,0 Terceira linha: 4,0 4,0 4,5 0,5 3,0 4,0

a) Construa uma tabela de distribuição de frequências absoluta e relativa em classes de números racionais de 0 a 1*, de 1 a 2*, de 2 a 3*, de 3 a 4 * e de 4 a 5*, em que * significa que o número final não está na classe.

b) Qual é a frequência absoluta dos jovens que gastam mais de 3 horas ouvindo música durante um dia?

c) Determine a frequência relativa dos jovens que gastam 3 horas ouvindo música durante um dia.

d) Analisando a tabela de distribuição de frequên­cias construída, o que representam os 40%?

e) Podemos afirmar que mais de 50% dos jovens passam mais de 3 horas por dia ouvindo música? Justifique sua resposta.

15 Observe o gráfico a seguir.

Gráfico de colunas. Título: Número de estudantes, por idade, de determinada escola que participaram do Enem: Exame Nacional do Ensino Médio. No eixo horizontal são indicadas as idades em ano. No eixo vertical é indicado o número de estudantes. Os dados são: Idade: 16: 60 estudantes; Idade 17: 30 estudantes; Idade 18: 18 estudantes; Idade 19: 12 estudantes.
* Enem: Exame Nacional do Ensino Médio. Dados obtidos pela escola.

Com base na análise do gráfico, faça o que se pede.

a) Construa uma tabela de distribuição de frequências com a frequência relativa em porcentagem.

b) Qual é a frequência relativa dos participantes do Enem com 18 anos nessa escola?

c) Qual é a porcentagem de participantes com idade superior a 17 anos?

d) O que é possível perceber, em relação ao número de estudantes que participam do Enem, à medida que a idade dos estudantes aumenta?

16 A tabela a seguir mostra o tempo, em hora, que os meninos e as meninas do 8º ano de um colégio acessam a internet ­semanalmente.

Tempo semanal de acesso à internet

Tempo Classe (de a até b*)

Frequência absoluta: meninos

Frequência absoluta: meninas

De 0 a 1 hora

7

0

De 1 a 2 horas

9

9

De 2 a 3 horas

6

6

De 3 a 4 horas

5

5

De 4 a 5 horas

3

4

Total

30

24

* O número b não está incluído na classe. Dados obtidos pelo colégio.

a) De acôrdo com os dados da tabela, é possível afirmar que, entre os estudantes do 8º ano, o percentual de meninos e o percentual de meninas que acessam a internet de 3 a 4 horas semanalmente são iguais? Justifique.

b) Construa a tabela de frequências relativas na fôrma percentual e verifique se sua resposta ao item a está correta.

4. Medidas estatísticas

Já aprendemos vários recursos e técnicas estatísticas para a descrição do grupo de valores que uma variável pode assumir. Observamos que as organizações de dados em tabelas de frequências e gráficos podem fornecer informações sobre o comportamento de uma variável, possibilitando verificar tendências e padrões.

Porém, às vezes, precisamos resumir ainda mais um conjunto de dados para expressar determinada característica da população pesquisada.

Para isso, estudaremos a seguir algumas medidas estatísticas de posição ou de tendência central: moda, média aritmética, média aritmética ponderada e mediana.

Moda

Paulo trabalha em uma empresa de roupas selecionando adolescentes para serem modelos comerciais. Ele escolheu 160 candidatos e anotou suas alturas nesta tabela.

Distribuição das alturas dos candidatos selecionados

Altura (em metro)

1,50

1,55

1,56

1,58

1,60

1,62

1,68

1,70

1,72

1,75

Frequência absoluta

10

15

22

23

25

35

12

10

5

3

Dados obtidos por Paulo.

Como a altura que aparece mais vezes, isto é, que apresenta a maior frequência (35) é 1,62 métro, dizemos que 1,62 métro é a moda desse conjunto de dados.

Ilustração. Três pessoas, uma menina, um menino e um homem, em um estúdio fotográfico, com um fundo infinito atrás deles e equipamentos de fotografia a frente deles. Ao centro o menino, de cabelo crespo, óculos escuros, camisa roxa, bermuda amarela e tênis branco. Ele fala: Para mim, moda é outra coisa. À esquerda do menino está uma menina de cabelo ruivo, blusa verde, saia preta e tênis vermelho. À direita do menino está um homem de cabelo castanho, óculos, camiseta vermelha, calça jeans e sapato marrom. Ele diz: 'Pois é, existem palavras usadas na Matemática que são empregadas no dia a dia com outro significado.'

Paulo também registrou outra característica desse grupo, a idade, em uma tabela de distribuição das frequências absolutas.

Distribuição das idades dos selecionados

Idade (em ano)

12

13

14

15

16

17

Frequência absoluta

11

34

34

32

31

18

Dados obtidos por Paulo.

Na tabela, as idades que apresentam a maior frequência (34) são 13 e 14 anos. Então, dizemos que nesse conjunto de dados existem duas modas (bimodal): 13 anos e 14 anos.

Nem sempre a moda é um número. Acompanhe outra situação.

A tabela a seguir apresenta o resultado de uma pesquisa realizada com clientes de uma empresa de tê vê por assinatura para conhecer melhor a preferência deles em relação a alguns canais.

Preferência dos telespectadores por alguns canais de TV

Canal de TV

Canal X

Canal Y

Canal Z

Canal K

Canal W

Frequência absoluta: telespectadores

420

600

500

280

200

Dados obtidos pela empresa de tê vê por assinatura.

Ilustração. Um homem e uma mulher conversam. À esquerda, mulher de cabelo encaracolado preto, regata vermelha, bermuda jeans e tênis vermelho, segura uma bolsa azul. À direita dela, homem de boné laranja, colete laranja, camiseta azul, calça jeans e tênis preto, usa um crachá. O homem está fazendo anotação em um papel sobre uma prancheta.

Com base na tabela apresentada, percebemos que o canal de tê vê com maior frequência, 600 teles­pectadores, é o canal Y. Podemos dizer, então, que esse canal é a moda desse conjunto de dados.

Em um conjunto de dados, moda é o elemento, numérico ou não, que se destaca por apresentar a maior frequência absoluta. Se dois ou mais elementos desse conjunto tiverem a mesma frequência absoluta, maior do que os demais, esses elementos serão as modas do conjunto.

Observação

Quando todos os valores de uma pesquisa tiverem a mesma frequência, dizemos que não há moda ou que o conjunto de dados é amodal. Por exemplo, na situação da pesquisa sobre a preferência de canais, se todos os canais tivessem a mesma preferência, o conjunto de canais seria amodal.

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

17 Determine a moda de cada sequência.

a) 7, 7, 8, 10, 10, 13, 14, 7, 9, 7

b) 5, 5, 5, 5, 5, 5

c) 10, 12, 17, 12, 10, 18, 18, 20

d) 3,2; 4,3; 5,1; 7,8

18 Para avaliar a qualidade das lâmpadas produ­zidas por uma empresa, uma equipe técnica separou uma amostra com 20 lâmpadas e registrou sua vida útil, em dia:

Esquema: números dispostos em 2 linhas. Primeira linha: 15 14 12 13 14 14 15 10 10 12 Segunda linha: 13 10 15 10 12 12 12 14 15 12

a) Construa uma tabela de distribuição de frequências absolutas para essa situação.

b) Determine a moda dessa distribuição de frequências.

19

Ícone de Atividade em dupla ou em grupo.

Faça uma pesquisa com uma amostra de 10 colegas da classe e descubra qual é a moda dos esportes preferidos por vocês.

20 Hora de criar – Escreva uma situação de uma sequência de dados que seja bimodal e outra que seja amodal.

Média aritmética

Vamos relembrar como calcular a média de um conjunto de dados. Acompanhe a situação a seguir.

Alexandre, o professor de História, avisou aos estudantes que a média bimestral seria calculada conforme o seguinte critério: adicionam-se as notas obtidas no projeto individual, na prova e no trabalho em grupo e o resultado obtido é dividido por 3.

Laura é estudante na turma de Alexandre e calculou sua média bimestral desta maneira:

Esquema. Média é igual à fração: numerador: 5 mais 6,5 mais 9,5; denominador: 3; fim da fração; é igual à fração 21 terços, fim da fração, é igual a 7.
O número 5 indica a nota de projeto individual.
O número 6,5 indica a nota da prova.
O número 9,5 indica a nota de trabalho em grupo.

Portanto, nesse bimestre, Laura obteve média 7,0.

A média aritmética, ou simplesmente média, das notas de Laura é 7,0. Analisando o cálculo, é como se ela tivesse obtido notas 7,0 em todas essas avaliações.

Ilustração. Mulher de cabelo castanho encaracolado, faixa rosa na cabeça e camiseta roxa. Ela fala: Vamos representar graficamente as notas de Laura e verificar o significado gráfico da média.
Gráfico de colunas composto de retângulos em cada coluna. Título: As notas de Laura e a reta média. No eixo horizontal estão indicadas as avaliações. No eixo vertical está indica a nota. Os dados são: Projeto: 5 retângulos brancos, 2 retângulos laranjas igual, nota corresponde a 5,0; Prova: 6 retângulos brancos, metade de um retângulo branco e metade de um retângulo laranja; nota corresponde a 6,5; Trabalho: 7 retângulos brancos, 2 retângulos azuis e metade de um retângulo azul; nota corresponde a 9,5.
Dados obtidos pelo professor de História.

   Observe que

Figura. Retângulo sem preenchimento.

= 1,0 e que

Figura. Retângulo com altura igual a metade da altura do retângulo anterior sem preenchimento.

= 0,5.

   Abaixo da reta média (

Figura. Tracejado vermelho.

), há

Figura. Retângulo com preenchimento amarelo.

e

Figura. Retângulo com preenchimento amarelo.

em Projeto e

Figura. Retângulo com altura igual a metade da altura do retângulo anterior com preenchimento amarelo.

em Prova.

   Acima da reta média, há

Figura. Retângulo com preenchimento azul.

,

Figura. Retângulo com preenchimento azul.

e

Figura. Retângulo com altura igual a metade da altura do retângulo anterior com preenchimento azul.

em Trabalho.

Como podemos notar, há duas vírgula cinco unidades acima (+2,5) e duas vírgula cinco unidades abaixo (2,5) da ordenada dos pontos da reta média.

A reta média ajuda a visualizar melhor a distribuição dos dados de um grupo de valores, se estão mais concentrados ou mais dispersos, isto é, mais espalhados.

O gráfico de colunas nos ajuda também a perceber o que os estatísticos chamam de amplitude, que é a diferença entre o maior e o menor valor da variável estudada. Nesse caso, a amplitude é 4,5 (9,5 5).

No 9º ano, ampliaremos esse estudo da dispersão de um conjunto de valores por meio do cálculo do desvio médio.

Para calcular a média aritmética de dois ou mais números, basta dividir a soma desses números pela quantidade de números dados.

Média aritmética ponderada

Acompanhe as situações a seguir.

Situação 1

Fotografia. Menina sentada com a boca aberta na cadeira de um dentista. Uma mulher com máscara descartável sobre a boca está com um instrumento examinando a boca da menina.

Durante o último mês, o número de atendimentos diários de uma clínica odontológica foi:

Esquema: números dispostos em 4 linhas. Primeira linha: 16 18 19 19 16 Segunda linha: 19 20 19 18 19 Terceira linha: 17 17 16 18 18 Quarta linha: 20 20 18 16 17

Para determinar a média diária de atendimentos feitos nessa clínica, podemos verificar a quantidade de atendimentos diários e calcular a média. Observe:

16 aparece 4 vezes;

17 aparece 3 vezes;

18 aparece 5 vezes;

19 aparece 5 vezes;

20 aparece 3 vezes.

Então:

média =

Expressão matemática. Média é igual à fração; numerador: 4 vezes 16 mais 3 vezes 17 mais 5 vezes 18 mais 5 vezes 19 mais 3 vezes 20; denominador: 4 mais 3 mais 5 mais 5 mais 3, fim da fração,

=

fração: numerador: 64 mais 51 mais 90 mais 95 mais 60; denominador: 20

=

fração, 360 20 avos

=18

Logo, a média diária de atendimentos feitos nessa clínica odontológica foi 18.

Situação 2

A prefeitura de um município brasileiro promoveu um concurso público para preencher algumas vagas. Na 1ª etapa do concurso, cada candidato realizou três provas: Matemática, Língua Portuguesa e Conhecimentos Gerais.

A média mínima para passar para a 2ª etapa do concurso era 6,0.

Observe o critério para o cálculo da média dos candidatos:

prova de Matemática, peso 4;

prova de Língua Portuguesa, peso 4;

prova de Conhecimentos Gerais, peso 2.

Ilustração. Menino de cabelo preto e camiseta vermelha. Ele fala: 'Peso 2' significa que a nota é contada duas vezes. 'Peso 4' significa que a nota é contada quatro vezes, ou seja, o dobro da outra. Ao lado do menino está um monitor de computador com as informações: NOTAS DAS PROVAS DE FERNANDO. Matemática: 7,5. Língua Portuguesa: 5,0. Conhecimentos Gerais: 6,0.

Fernando era um dos candidatos. Assim que as notas foram publicadas no Diário Oficial do município, ele resolveu conferir sua média.

Como os pesos das provas são diferentes, para calcular sua média, Fernando precisou multiplicar cada nota pelo seu respectivo peso e, então, adicionar todos os resultados obtidos. Em seguida, dividiu o resultado pela soma de todos os pesos.

Observe como ele fez:

Fração; numerador: 4 vezes 7,5 mais 4 vezes 5 mais 2 vezes 6; denominador: 4 mais 4 mais 2, fim da fração, é igual a fração; numerador: 30 mais 20 mais 12; denominador: 10, fim da fração, é igual a fração, 62 décimos, fim da fração, é igual a 6,2.

Dessa maneira, Fernando confirmou que sua média foi 6,2. Portanto, ele passou para a 2ª etapa do concurso público da prefeitura.

Note que, tanto na situação da clínica odontológica quanto na situação do concurso público, foi necessário considerar o peso de cada dado para calcularmos a média. Por esse motivo, ela é chamada de média aritmética ponderada.

Para obter a média aritmética ponderada de dois ou mais números, multiplicamos cada ­número por seu respectivo peso, adicionamos os produtos obtidos e dividimos o total pela soma dos pesos.

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

21 Lúcio comprou duas camisas; uma custou R$ 45,00quarenta e cinco reais, e a outra, R$ 39,00trinta e nove reais. Qual é o preço médio dessas camisas?

22 O quadro a seguir indica as temperaturas mínimas registradas na semana de 2 a 8 de julho em uma cidade da região Sul do Brasil. Encontre a média aritmética das temperaturas mínimas registradas nessa semana.

Dia

Temperatura mínima (em °C)

2

2

3

1

4

−6

5

−4

6

−4

7

−2

8

−1

23 O quadro a seguir apresenta o número de estudantes matriculados no 8º ano de uma escola entre os anos de 2020 e 2023.

2020

2021

2022

2023

193

209

216

210

a) Quantos estudantes foram matriculados no 8º ano dessa escola nesses quatro anos?

b) Qual foi o número médio de estudantes matriculados nos quatro anos indicados?

c) Em quais anos o número de matrículas foi inferior à média?

24 O número de automóveis vendidos em uma concessionária no primeiro trimestre do ano foi representado por um gráfico de barras.

Gráfico de barras horizontais. Título: Venda de automóveis. No eixo horizontal está indicado o número de automóveis vendidos. No eixo vertical estão indicados os meses. Os dados são: Janeiro: 38; Fevereiro: 22; Março: 42.
Dados obtidos pela concessionária.

a) Qual foi o número médio de automóveis vendidos na concessionária nesse tri­mestre?

b) Em março, quantos automóveis foram vendidos acima da média?

c) Considerando os três primeiros meses, faça uma estimativa de quantos automóveis devem ser vendidos no primeiro semestre do ano.

d) Mostre duas maneiras de chegar ao resul­tado do item anterior.

25 Para escolher um representante de sala, o 8º ano a fez uma votação. O resultado está representado na tabela a seguir.

Representante de sala do 8º ano

Estudante

Número de votos

Adriana

21

Vítor

18

Mariana

11

Dados obtidos pelo 8º ano a.

Faria sentido calcular a média para escolher o representante de sala do 8º ano?

26 Uma editora apresentou a quantidade de livros publicados no período de 2021 a 2023 no pictograma a seguir.

Gráfico de pictogramas. Título: Livros publicados. O gráfico é representado por livros, em que cada ícone de livro corresponde a 100 livros. Os dados são: 2021: 4 livros; 2022: 3 livros e metade de um livro; 2023: 5 livros e metade de um livro.
Dados obtidos pela editora.

Calcule a média anual de livros produzidos por essa editora nesse período.

27 O salário mensal, em real, de cada um dos 10 funcionários de uma microempresa é:

Esquema: números dispostos em 2 linhas. Primeira linha: 2200 2320 2200 2050 2200 Segunda linha: 2320 2320 2050 2780 5970

a) Construa uma tabela de distribuição de frequências para essa situação.

b) Determine o salário modal (moda) desses funcionários.

c) Calcule o salário mensal médio desses funcionários.

d) Quantos funcionários recebem salário mensal menor que o salário mensal médio? Que porcentagem do total de funcionários eles representam?

e)

Ícone de Atividade em dupla ou em grupo.

Discuta com um colega como é possível que o salário médio dos funcionários dessa empresa seja maior que o salário da maioria dos funcionários.

28 Em um concurso, a prova escrita tem peso 3, e a prova prática tem peso 2. Qual é a média de um candidato que obteve nota 8 na prova escrita e nota 5 na prova prática?

29 Catarina é professora de Matemática. Ela obtém a média bimestral dos estudantes propondo três atividades durante o bimestre: a nota da primeira atividade tem peso 1, a nota da segunda tem peso 2 e a da terceira tem peso 3. Calcule a média bimestral de um estudante de Catarina que obteve 4,0 na primeira atividade, 7,0 na segunda e 8,0 na terceira.

30 Uma imobiliária vendeu 5 terrenos a R$ 48.000,00quarenta e oito mil reais cada um e 10 terrenos a R$ 45.000,00quarenta e cinco mil reais cada um. Qual foi o valor médio dos terrenos vendidos pela imobiliária?

31

Ícone de Atividade em dupla ou em grupo.

Hora de criar – Troque com um colega um problema, criado por vocês, sobre média aritmética ponderada. Depois de cada um resolver o problema elaborado pelo outro, destroquem para corrigi-los.

Pense mais um poucoreticências

FAÇA A ATIVIDADE NO CADERNO

Os gráficos a seguir representam pontos, de 0 a 100, que cada integrante das equipes a e B obteve na final da competição de saltos ornamentais promovida por um clube.

Gráfico de colunas. Título: Número de pontos de cada integrante da equipe A. No eixo horizontal estão indicados os integrantes. No eixo vertical estão indicados os pontos. Os dados são: Ana: 60; Paula: 70; Bia: 70; Lia: 70; Sara: 80; Rita: 70.
Dados obtidos pelo clube.
Gráfico de colunas. Título: Número de pontos de cada integrante da equipe B. No eixo horizontal estão indicados os integrantes. No eixo vertical estão indicados os pontos. Os dados são: Clara: 120; Sônia: 120; Rute: 40; Léia: 70; Rosa: 70; Bete: 0.
Dados obtidos pelo clube.

a) Quantos pontos cada equipe obteve?

b) Quantos integrantes tem cada equipe?

c) Calcule a média de pontos de cada equipe.

d) Qual equipe obteve maior média?

e) Nesse caso, a média aritmética traduz o perfil de cada equipe? Justifique.

Mediana

Acompanhe as situações a seguir.

Situação 1

Sete amigos se encontraram no fim de semana em um salão de jogos.

Ilustração. Sete crianças brincando em um salão de jogos com diversos aparelhos eletrônicos.

Após brincar em cada um dos jogos, eles obtiveram as seguintes pontuações finais: 160, 207, 177, 185, 175, 195 e 192.

O rol correspondente a essas pontuações é:

Esquema: números dispostos em 1 linha: 160 175 177 185 192 195 207

Como o conjunto de dados tem uma quantidade ímpar de termos, existe um termo que, após a ordenação, ocupa a posição central. Ele é chamado de termo central.

Esquema. Sete números dispostos em uma mesma linha. Três termos: 160 (primeira posição), 175 (segunda posição), 177 (terceira posição). Termo central: 185 (quarta posição). Três termos: 192 (quinta posição), 195 (sexta posição), 207 (sétima posição).

Observe que, nessa situação, o termo central ocupa a 4ª posição, que corresponde a 185 pontos­. Então, dizemos que 185 é a mediana das pontuações finais obtidas pelo grupo de amigos.

Situação 2

Gabriela costuma participar de corridas de rua. Em um ano, ela participou de 8 corridas de 5 quilômetros e obteve os seguintes tempos, em minuto: 27, 32, 35, 29, 30, 25, 35 e 26.

O rol correspondente a esses tempos é:

Esquema: números dispostos em 1 linha: 25 26 27 29 30 32 35 35

Como o conjunto de dados tem uma quantidade par de termos, existem dois termos centrais.

Esquema. Oito números dispostos em uma mesma linha. Três termos: 25 (primeira posição), 26 (segunda posição), 27 (terceira posição). Termos centrais: 29 (quarta posição) e 30 (quinta posição). Três termos: 32 (sexta posição), 35 (sétima posição), 35 (oitava posição).

Observe que, nessa situação, os termos centrais ocupam a 4ª e a 5ª posição, que correspondem aos tempos de 29 e 30 minutos, respectivamente.

Nesse caso, a mediana será a média aritmética desses dois valores.

Esquema. Fração; numerador: 29 (termo da quarta posição) mais 30 (termo da quinta posição); denominador: 2, fim da fração, é igual a fração, 59 meios, fim da fração, é igual a 29,5.

Ou seja, a mediana dos tempos obtidos por Gabriela é 29 minutos e 30 segundos.

Mediana de um grupo de valores ordenados, de modo crescente ou decrescente, é o termo que ocupa a posição central (com quantidade ímpar de termos) ou é o valor obtido pela média aritmética de seus dois termos centrais (com quantidade par de termos).

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

32 Calcule a mediana dos seguintes grupos de valores:

a) 8, 4, 5, 3, 10

b) 1, 3, 6, 10, 13, 8, 5, 3

c) 0,2; 0,5; 0,1; 1,2; 1,5; 2,3; 0,7

d) 120, 142, 102, 101, 108, 150

33 Ana pesquisou o preço de um produto em 10 sites e encontrou os seguintes valores, em reais:

Esquema: números dispostos em 4 linhas: Primeira linha: 1624,00 1824,00 1822,00 Segunda linha: 1624,00 1378,00 1600,00 Terceira linha: 1378,00 1224,00 1258,00 Quarta linha: 1378,00

Determine o valor mediano (mediana) desses preços.

34 Observe o gráfico a seguir.

Gráfico de colunas. Título: Idade dos jovens residentes em um edifício. No eixo horizontal estão indicadas idades. No eixo vertical estão indicados número de jovens. Os dados são: 20 anos: 6; 19 anos: 7; 18 anos: 4; 17 anos: 8.
Dados obtidos pelo zelador.

a) Quantos jovens residem nesse edifício?

b) Calcule a idade média desses jovens.

c) Determine a idade modal desses jovens.

d) Calcule a idade mediana desses jovens.

e) Se forem acrescentados a esses dados dois jovens de 16 anos, o que acontecerá com cada medida de tendência central calculada anteriormente?

35 Marta registrou o tempo, em minuto, que seus colegas gastam no percurso de casa à escola:

Esquema: números dispostos em 3 linhas.
Primeira linha: 10 120 15 20 30 30 25
Segunda linha: 60 40 40 50 30 20 15
Terceira linha: 35 35 20 60 90 90 15

Determine:

a) a mediana desses valores;

b) a moda desses valores;

c) o tempo médio desse percurso;

d) a medida que, na sua opinião, caracteriza melhor esse grupo de dados. Justifique.

36 Uma empresa encomendou uma pesquisa sobre o chocolate preferido de alguns con­su­midores. O resultado obtido foi apresentado em uma tabela.

Chocolate preferido dos consumidores

Tipo de chocolate

Número de consumidores

Meio amargo

255

Ao leite

765

Branco

345

Amargo

135

Dados obtidos pela empresa.

a) Determine qual das três medidas estatísticas (média, mediana e moda) ­caracteriza melhor essa pesquisa. Justifique sua ­resposta.

b) Calcule a porcentagem de cada tipo de chocolate em relação ao número total de ­consumidores.

c) Construa um gráfico de colunas com as porcentagens obtidas no item b.

TRABALHANDO A INFORMAÇÃO

Pesquisa amostral

Em anos anteriores, estudamos que, para fazer uma pesquisa estatística, por exemplo, para determinar qual é o esporte preferido dos estudantes de uma escola, é necessário planejá-la.

Assim, é preciso: definir o objetivo da pesquisa, isto é, o que se quer saber com a pesquisa – no exemplo, conhecer os esportes que mais interessam aos estudantes para organizar as aulas de Educação Física; determinar como será feita a coleta dos dados – por questionário, entrevista pessoal, rede social etcétera; definir com quem obter os dados a serem coletados, ou seja, definir o que os matemáticos chamam de população da pesquisa – no exemplo, estudantes de uma escola. Todos os estudantes serão contatados ou só uma parte?

Se todos os estudantes da população forem contatados, será uma pesquisa censitária. Se for só uma parte, uma amostra, será uma pesquisa amostral.

Na pesquisa amostral surge a questão: “Quais critérios empregar para escolher quem será pesquisado?”.

Ilustração. Um menino e uma menina conversam. À esquerda, menino de cabelo curto, camiseta roxa com mangas brancas e bermuda azul com listra branca. Ele fala: 'Eu acho que basta escolher os amigos da minha turma.' Ao lado dele está uma menina de cabelo loiro, camiseta roxa com mangas brancas e saia azul com listra branca. Ela diz: 'Uma boa amostra deve representar todos os estudantes da escola, de maneira diretamente proporcional à quantidade de estudantes nos períodos (manhã, tarde, noite), ciclos (inicial e final do Fundamental, Ensino Médio etc.), anos, gêneros (feminino, masculino, outro) etc.'

Definida a amostra, e obtidos os dados, estes devem ser organizados e apresentados em tabelas, em gráficos mais adequados a esses dados, sem se esquecer dos títulos e das fontes.

Finalmente, os dados organizados devem ser analisados. Alguns instrumentos que auxiliam na análise dos dados e na elaboração de um relatório conclusivo da pesquisa amostral são a obtenção da amplitude e das medidas de tendência central – moda, mediana, média aritmética ou ponderada – após selecionadas as mais adequadas a eles.

Agora quem trabalha é você!

FAÇA A ATIVIDADE NO CADERNO

Ícone de Atividade em dupla ou em grupo.

 Forme uma equipe com mais três colegas e planejem uma pesquisa amostral. Para isso, convém que discutam e decidam:

a organização da equipe, ou seja, quem fará o quê;

os objetivos da pesquisa e a elaboração de possíveis teses sobre o tema da pesquisa – sugestões: ­preferência de lazer, ou de profissão futura, ou de animais, ou de plantas, ou de filmes ou livros etcétera;

a população e a amostra a serem pesquisadas;

a maneira com que os dados serão obtidos;

os recursos de organização dos dados mais adequados à pesquisa;

a plataforma ou as plataformas em que o relatório será apresentado: caderno, cartaz, vídeo, mídia eletrônica etcétera

 Também convém que, antes de passarem à parte prática, conversem com o professor sobre o projeto elaborado para realizar essa pesquisa.

PARA SABER MAIS

Estimativa de multidões

Leia a notícia a seguir.

Imagem com texto. Fotografia. Vista de 5 casais (mulher e homem), um ao lado do outro de braços dados. No centro, casal de noivos. Ao lado deles, um padre e uma freira. Há mais três casais: mulheres de vestidos coloridos e homens vestidos de calça preta, camisa colorida e chapéu. Ao fundo, entrada com o escrito: CARUARU e ilustração nas paredes ao fundo de pessoas dançando. Legenda da fotografia: Apresentação da quadrilha junina Animadrilha no São João de Caruaru, em Pernambuco. (fotografia de 2019.)
Título acima da fotografia: Reuniões com segmentos culturais fortaleceram ações da Fundação de Cultura e Turismo de Caruaru em 2019.
Texto abaixo da fotografia: Em 2019, o Caruaru Por Paixão se consolidou cada vez mais, levando para os caruaruenses
e turistas uma programação rica em cultura popular, exposições de arte, mostra de cinema e
diversas expressões artísticas. A estimativa é que aproximadamente 200 mil pessoas tenham
passado pela cidade nos dias do evento, nos quatro polos: Feira de Caruaru, Polo Alto do Moura,
Polo “Meu Bom Jesus”, e Polo Estação Criativa.
Fonte: CARUARU. Prefeitura Municipal. Reuniões com segmentos culturais fortaleceram ações da
Fundação de Cultura e Turismo de Caruaru em 2019. Caruaru: Prefeitura Municipal, 30 dez. 2019.
Disponível em: https://caruaru.pe.gov.br/reunioes-com-segmentos-culturais-fortaleceram-acoes-dafundacao-
de-cultura-e-turismo-de-caruaru-em-2019/. Acesso em: 4 mar. 2022.

Fonte: CARUARU. Prefeitura Municipal. Reuniões com segmentos culturais fortaleceram ações da Fundação de Cultura e Turismo de Caruaru em 2019. Caruaru: Prefeitura Municipal, 30 dez. 2019. Disponível em: https://oeds.link/wNdVCc. Acesso em: 4 mar. 2022.

Em cidades como Rio de Janeiro, São Paulo, Salvador e Recife, entre outras, têm ocorrido eventos que concentram públicos cada vez maiores. Estimar o número de pessoas de uma multidão é fundamental para qualquer organização responsável pelo planejamento ou mesmo pela avaliação posterior de um evento.

Para isso, os organizadores, a Polícia Militar e os órgãos de imprensa e de trânsito fazem uma estimativa, considerando que cada metro quadrado abriga até quatro pessoas. Por se tratar de uma norma internacional, esse método de estimativa é usado tanto pelos órgãos de segurança pública quanto pelos órgãos de imprensa de todo o mundo.

Outro método que fornece uma estimativa mais próxima do valor real é a fotografia aérea. Tiram-se fotografias aéreas da multidão, calcula-se a escala das fotografias e, em seguida, divide-se a fotografia em pequenas regiões quadradas, das quais se calcula a densidade média, para depois estimar a densidade da área toda.

Observe, nesta sequência de fotografias, diferentes densidades em uma mesma área.

Composição de 8 Fotografias. 1. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 7 pessoas em cada quadrado.
2. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 6 pessoas em cada quadrado.
3. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 5 pessoas em cada quadrado.
4. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 4 pessoas em cada quadrado.
5. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 3 pessoas em cada quadrado.
6. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com aproximadamente 2 pessoas em cada quadrado.
7. Vista superior de um quadrado com aglomerado de pessoas. O quadrado está dividido em 3 linhas e 3 colunas com 1 pessoa em cada quadrado.
8. Vista superior de um quadrado com uma pessoa. O quadrado está dividido em 3 linhas e 3 colunas com 1 pessoa no quadrado central.

Agora é com você!

FAÇA AS ATIVIDADES NO CADERNO

1 A imagem a seguir representa a fotografia aérea de um show. Faça uma estimativa do público desse evento.

Ilustração. Vista aérea de um palco e de aglomerado de pessoas. À esquerda, o palco. À direita, aglomerado de pessoas em área dividida por ladrilhos formando 10 linhas e 17 colunas. As 7 primeiras colunas apresentam aproximadamente 5 pessoas por ladrilho. As 3 colunas seguintes apresentam aproximadamente 4 pessoas por ladrilho. As 4 colunas seguintes apresentam aproximadamente 3 pessoas por ladrilho. As 2 colunas seguintes apresentam aproximadamente 2 pessoas por ladrilho. E a última coluna apresenta aproximadamente 1 pessoa por ladrilho.

2

Ícone de Atividade em dupla ou em grupo.

Reúna-se com um colega e discutam a seguinte questão:

Para comemorar o título do campeonato nacional, torcedores de um time de futebol ocuparam a principal avenida da cidade. Estimativas indicaram que havia mais de 300 mil torcedores em toda a avenida. Sabendo que essa avenida tem 1quilômetro de comprimento e 26métros de largura, o que pode ser afirmado sobre essa estimativa? Justifique sua resposta.

3 Pesquise uma notícia sobre um grande evento na cidade onde você mora que tenha duas estimativas de participantes: uma da polícia e outra dos organizadores do evento. Em seguida, pesquise as dimensões do local e discuta qual estimativa possivelmente está correta.

5. Noções de probabilidade

Acompanhe as situações a seguir.

Situação 1

Uma loja fez uma promoção em que foram distribuídos .1000 números para o sorteio de uma bicicleta. Afonso tem 5 números e Geórgia, 1 número. Acompanhe como determinar a probabilidade de cada um deles ser sorteado.

Ilustração. À direita, palco com uma bicicleta e faixa sobre o palco com o texto: GRANDE PRÊMIO. Ao fundo, pessoas com os braços levantados e bandeirinhas coloridas no alto. À frente, homem de chapéu e camisa verde. Ao lado, mulher de cabelo castanho e regata rosa. Eles seguram fichas.

Essa situação envolve a ideia de incerteza, pois sortear um número dentre os .1000 é um experimento no qual conhecemos os resultados possíveis, mas não podemos assegurar qual será o resultado final, ou seja, não é possível saber qual será o número sorteado. Esse tipo de experimento faz parte da Teoria das Probabilidades.

Ícone de Atividade oral.

 Você sabe quais são as regras determinadas pelo Ministério da Economia para realizar sorteios?

Na Teoria das Probabilidades, estudamos as leis que regem os fenômenos que dependem do acaso, isto é, fenômenos cujos resultados não podem ser previstos. Nesse caso, interessam a essa teoria os experimentos aleatórios, aqueles que podem ser repetidos nas mesmas condições tantas vezes quanto quisermos e cujos resultados possíveis são previamente conhecidos.

Ilustração. Menina de cabelo castanho e camiseta rosa. Ela diz: 'São exemplos de experimentos aleatórios: lançar um dado e observar a pontuação obtida; lançar duas moedas; retirar uma carta do baralho.'

Na situação apresentada, os .1000 números do sorteio formam o espaço amostral, ou seja, o conjunto de todos os resultados possíveis do experimento.

O espaço amostral de um experimento aleatório é o conjunto de todos os resultados possíveis desse experimento.

O número adquirido por Geórgia fórma um evento desse experimento aleatório, do mesmo modo que os 5 números adquiridos por Afonso.

Qualquer conjunto de resultados possíveis de um experimento aleatório é chamado de evento.

Definidos o espaço amostral e o evento correspondente ao experimento aleatório, podemos determinar a probabilidade.

Probabilidade é a medida da chance de um evento acontecer.

No sorteio da bicicleta, cada número tem a mesma chance de ser sorteado. Nesse caso, para calcular a probabilidade, basta dividir o número de elementos do evento correspondente ao experimento aleatório pelo número de elementos do espaço amostral.

Probabilidade de ocorrência de um evento

igual à fração: número de elementos do evento sobre número de elementos do espaço amostral, fim da fração.

Portanto, temos que:

a probabilidade de Geórgia ser sorteada é

Fração. Um milésimo.

ou 0,001 ou 0,1%;

a probabilidade de Afonso ser sorteado é

Fração. Cinco milésimos.

ou 0,005 ou 0,5%.

Situação 2

Qual é a probabilidade de sair a soma 6 no lançamento de dois dados comuns?

Antes de calcularmos a probabilidade, devemos definir o espaço amostral:

Ilustração. Mulher de cabelo ruivo e camiseta roxa fala: Aplicando o princípio multiplicativo, calculamos quantos elementos tem o espaço amostral. Para cada número do primeiro dado há 6 números possíveis do segundo dado. Logo, há 36 possibilidades (6 vezes 6), ou seja, este espaço amostral tem 36 elementos (pares ordenados).
(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), 
(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), 
(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), 
(1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), 
(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), 
(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6).

Observe que os casos favoráveis são:

Esquema. (1, 5) (2, 4) (3, 3) (4, 2) (5, 1)

Desse modo, a probabilidade de sair soma 6 nas faces dos dados é dada pela razão:

Fração, 5 36 avos, é aproximadamente igual a 0,14 ou igual a 14%

Observações

A probabilidade de um evento é um número de 0 a 1.

Quando a probabilidade é zero, dizemos que o evento é impossível.

Quando a probabilidade é 1, dizemos que o evento é certo.

A soma das probabilidades de todos os elementos do espaço amostral é 1.

EXERCÍCIOS PROPOSTOS

FAÇA AS ATIVIDADES NO CADERNO

37 Sortear uma letra de um texto qualquer é um experimento aleatório? Por quê?

38 Em uma urna, há 9 bolas pretas, 5 bolas amarelas e 3 bolas vermelhas. Se retirarmos uma bola ao acaso, qual é a probabilidade de sair uma bola amarela?

39 A professora vai sortear, ao acaso, um estudante entre os 30 estudantes da sala. Sabendo que há 18 meninas na sala, qual é a probabilidade de ser sorteada uma menina? E de ser sorteado um menino? Qual é a soma das probabilidades?

40 Considerando o lançamento de dois dados comuns, determine a probabilidade de a soma das faces ser:

a) 8;

b) um número par;

c) maior que 10.

41 Quantos estudantes há na sua turma? Quantos são meninos? Calcule a probabilidade de que, ao sortear um estudante ao acaso, ele seja um menino.

Pense mais um poucoreticências

FAÇA A ATIVIDADE NO CADERNO

Lucas inventou um jôgo com dados. O desafiante lança dois dados e, se em pelo menos um dos dados sair o número 1, Lucas ganha o jôgo. Se em pelo menos um dos dados sair como menor número o 2 ou o 3, o desafiante lança os dados novamente. E, se em pelo menos um dos dados não sair os números 1, 2 ou 3, o desafiante ganha o jôgo. Quem tem maior probabilidade de vencer o jôgo: Lucas ou seu desafiante?

EXERCÍCIOS COMPLEMENTARES

FAÇA AS ATIVIDADES NO CADERNO

1 O pictograma a seguir mostra a quantidade de dê vê dês vendidos em uma loja durante a primeira semana de dezembro de 2023.

Gráfico de pictogramas. Título; Quantidade de DVDs vendidos na primeira semana de dezembro de 2023. O gráfico é representado por ícones de DVDs. Cada ícone de DVD corresponde a 20 unidades de DVDs. Os dados são: Domingo: 3 DVDs; Segunda-feira: 1 DVD inteiro e 1 pela metade. Terça-feira: 3 DVDs. Quarta-feira: 1 DVD inteiro e 1 pela metade. Quinta-feira: 6 DVDs. Sexta-feira: 9 DVDs. Sábado: 13 DVDs inteiros e 1 pela metade.
Dados obtidos pela loja.

a) Construa uma tabela de distribuição de frequências, com a frequência relativa em porcentagem.

b) Sabendo que a meta de venda diária dessa loja é de 100 dê vê dês, em quantos dias a loja atingiu a meta?

c) Quantos dê vê dês foram vendidos nessa ­semana?

Use o enunciado seguinte para responder aos exercícios 2 e 3.

Em um escritório trabalham 40 pessoas cujas idades, em anos, são dadas em ordem ­crescente:

18 – 19 – 20 – 20 – 20 – 24 – 24 – 24

24 – 24 – 28 – 28 – 28 – 30 – 30 – 30

30 – 30 – 32 – 32 – 35 – 35 – 35 – 35

36 – 36 – 36 – 36 – 36 – 40 – 40 – 40

42 – 45 – 45 – 48 – 48 – 50 – 50 – 60

2 (saréspi) Relativamente ao total de funcionários desse escritório, a porcentagem dos que têm idades inferiores a 32 anos é:

a) 45%.

b) 38%.

c) 37,5%.

d) 25%.

3 (saréspi) Um prêmio vai ser sorteado entre os 40 funcionários do escritório. A probabilidade de que a pessoa sorteada tenha menos de 25 anos é:

a)

Fração, 1 oitavo.

.

b)

Fração, 2 oitavos.

.

c)

Fração, 3 oitavos.

.

d)

Fração, 5 oitavos.

.

4 (saréspi) Em uma chácara, há um total de 350 ­árvores frutíferas, assim distribuídas:

Gráfico de setores. Título: Árvores frutíferas na chácara. Os dados são: Mangueiras: 10%. Limoeiros: 30%. Abacateiros: 20%. Laranjeiras: 40%.

As quantidades de laranjeiras e mangueiras são, respectivamente:

a) 140 e 35.

b) 140 e 70.

c) 140 e 105.

d) 105 e 70.

5 (enêm) A permanência de um gerente em uma empresa está condicionada à sua produção no semestre. Essa produção é avaliada pela média do lucro mensal do semestre. Se a média for, no mínimo, de 30 mil reais, o gerente permanece no cargo; caso contrário, ele será despedido. O quadro mostra o lucro mensal em milhares de reais, dessa empresa, de janeiro a maio do ano em curso.

Janeiro

Fevereiro

Março

Abril

Maio

21

35

21

30

38

Qual deve ser o lucro mínimo da empresa no mês de junho, em milhares de reais, para o gerente continuar no cargo no próximo semestre?

a) 26

b) 29

c) 30

d) 31

e) 35

6 Foi realizada uma pesquisa sobre o tempo que os 140 trabalhadores de uma empresa gastam no percurso entre a residência e o trabalho. Para tanto, foram selecionados, de modo imparcial, 40 trabalhadores.

Imagem. Texto: Tempo gasto pelos trabalhadores em minutos. 
Números organizados em 6 colunas e 7 linhas:
20  20  25  10  15  60
20  100  25  25  20  15
30  60  20 100 90 60
90  90  20  15  30  100
20  60  20  30 35 35
35  100 40 35  30  30
30  40 40 100

a) Construa uma tabela de distribuição de frequências com 5 classes, cada uma com amplitude igual a 20.

b) Calcule a média aritmética, a moda e a mediana do tempo gasto por esses trabalhadores.

c) Qual é a probabilidade de sortearmos, ao acaso, um trabalhador que gasta 90 minutos no percurso entre a residência e o trabalho?

7 A tabela a seguir mostra a idade das pessoas que se associaram a uma biblioteca pública durante o mês de julho.

Associados de julho

Idade (em anos)

Número de pessoas

14

30

16

7

18

2

20

10

21

12

27

18

30

21

Dados obtidos pela bibliotecária.

Faça o que se pede.

a) Calcule a idade média dos associados.

b) Determine a idade modal e a idade mediana.

c) Construa um gráfico de colunas para essa situação.

d) Qual é a probabilidade de sortearmos, ao acaso, um associado que tenha mais de 21 anos?

8 Em uma pesquisa eleitoral para verificar a posição de três candidatos a prefeito de um município, 4.quinhentas pessoas foram consultadas. O resultado da pesquisa será organizado em um gráfico de setor circular. Sabendo que um certo candidato recebeu .1050 indicações de intenções de voto, qual é a medida do ângulo central correspondente ao setor do gráfico que representará as intenções de voto desse candidato?

a) 42graus

b) 84graus

c) 120graus

d) 276graus

9 Um paraquedista precisa pousar em uma região quadrada localizada em um terreno retangular, conforme o esquema a seguir. Sabendo que o comprimento do lado da região quadrada mede 8 metros e que o paraquedista certamente pousará no terreno retangular, calcule a probabili­dade de o paraquedista pousar na região quadrada.

Ilustração. Retângulo verde com medidas: 24 metros por 16 metros. Dentro dele, um quadrado laranja.

10 (ú éfe ême ésse) Uma empresa tem 18 funcionários. Um deles pede demissão e é substituído por um funcionário de 22 anos de idade. Com isso, a média das idades dos funcionários diminui 2 anos. A idade do funcionário que se demitiu é:

a) 50 anos.

b) 48 anos.

c) 54 anos.

d) 56 anos.

e) 58 anos.

VERIFICANDO

FAÇA AS ATIVIDADES NO CADERNO

1 Uma amostra representativa dos estudantes de uma escola deve conter:

a) somente estudantes do período da tarde.

b) estudantes de uma única turma.

c) estudantes das diferentes turmas e dos diferentes períodos.

d) todos os estudantes de um único período.

2 Uma pesquisa sobre jogos digitais foi realizada com .1000 participantes. O resultado referente ao dispositivo preferido para jogos digitais foi representado no gráfico a seguir. 

Gráfico de setores. Título: Dispositivo preferido para jogos digitais. Os dados são: Smartphone: 41,60%; Videogame ou console: 25,80%; Desktop: 18,30%; Notebook: 9,20%; Tablet: 2,20%; Outros: 2,90%.
Dados obtidos pelo instituto de pesquisa.

Com base nesses dados, é possível concluir que:

a) menos de quatrocentas pessoas preferem jogar em smartphone.

b) a opção que teve menos votos foi “Outros.

c) aqueles que preferem computadores, desktop ou ­notebook, somam mais de 25% dos entrevistados.

d) o console foi a terceira opção mais votada.

3 Um supermercado fez uma pesquisa com os clientes sobre a preferência entre 3 marcas diferentes de sabonete.

Marca preferida de sabonete

Marca

A

B

C

Total de clientes

205

103

92

Dados obtidos pelo supermercado.

A frequência relativa aproximada para cada marca de sabonete é, respectivamente:

a) 2,05; 1,03 e 0,92.

b) 0,68; 0,34 e 0,30.

c) 0,51; 0,26 e 0,23.

d) 0,21; 0,10 e 0,09.

4 A professora fez uma pesquisa com os estudantes sobre o tipo de livro preferido. Ela constatou que, dos 35 estudantes, 11 preferem quadrinhos, 10 suspense, 8 romance e os demais ficção. Qual é a moda desses dados?

a) Quadrinhos

b) Suspense

c) Romance

d) Ficção

5 Para fechar a nota bimestral dos estudantes, um professor utiliza a média aritmética ponderada. A nota máxima de todas as provas é 10 e a primeira prova tem peso 1, a segunda tem peso 2 e a terceira tem peso 3. Se um estudante tirou, respectivamente, 8, 5 e 7, qual foi a média bimestral desse estudante?

a) 6,5

b) 6,6

c) 6,8

d) 7,0

6 Os números a seguir representam os salários, em real, dos funcionários de uma empresa.

Esquema. Números dispostos em duas linhas. Primeira linha: 1500 1800 3000 4500 1200 Segunda linha: 2300 1500 5000 2700 6000

Qual é a mediana, em real, dos salários dos funcionários dessa empresa?

a) .2300

b) .2500

c) .2700

d) .2950

Organizando

Vamos organizar o que você aprendeu neste capítulo? Para isso, responda às questões a seguir.

a) Quais são as etapas de uma pesquisa estatística? Descreva, com as próprias palavras, cada uma delas.

b) Supondo que você faça uma pesquisa com um grupo de pessoas sobre o tempo que elas passam em redes sociais na internet todos os dias, explique como você faria para coletar e organizar os dados dessa pesquisa.

c) O que frequência absoluta e frequência relativa têm de diferente?

d) O que média, moda e mediana têm de diferente?

e) Quais são as informações necessárias para que seja possível calcular a probabilidade de um evento ­acontecer?